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Abstract- This paper is concerned with transient thermoelastic 

problem in which we need to determine the temperature 

distribution, displacement function and thermal stresses of a 

semi-infinite circular beam when the boundary conditions are 

known. Integral transform techniques are used to obtain the 

solution of the problem.  
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I. INTRODUCTION 

n 2003, Noda et al. [1] have published a book on Thermal 

Stresses, second edition.  Khobragade [2] studied 

Thermoelastic analysis of a thick annular disc with radiation 

conditions and Khobragade [3] discussed Thermoelastic 

analysis of a thick circular plate. Pathak et al. [4] studied 

Transient Thermo elastic Problems of a Circular Plate with 

Heat Generation. Love [5] published a book on a treatise on 

the mathematical theory of elasticity. Marchi and Zgrablich 

[6] studies  Vibration in hollow circular membrane with 

elastic supports. Nowacki [7] discussed the state of stress in 

thick circular plate due to temperature field. Wankhede [8] 

studied the quasi-static thermal stresses in a  circular plate.  

In this paper, an attempt has been made to determine the 

temperature distribution, unknown temperature gradient, 

displacement function and thermal stresses of thick, semi-

infinite circular beam due to heat generation. The governing 

heat conduction equation has been solved by using Marchi-

Zgrablich and Fourier Cosine transform techniques. The result 

presented here will be more useful in engineering 

applications. 

II. STATEMENT OF THE PROBLEM 

Consider a thick circular beam occupying the space D: a  r 

b,  0 z< ∞. The material is homogeneous and isotropic. The 

differential equation governing the displacement potential 

function  (r ,z ,t) as Noda et al. [87] is  

T
zrrr

t































1

11
2

2

2

2

                        (1) 

where  and t  are the Poisson’s ratio and the linear 

coefficient of thermal expansion of the material of the plate 

and T is temperature of the beam satisfying the differential 

equation as Noda et al. [87] is 
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Subject to initial condition 
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where k is the thermal diffusivity of the material of the plate.  

The displacement function in the cylindrical co-ordinate 

system are represented by the Goodier thermoelastic function 

  and Love’s function L as  Noda et al. [87] are 
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in which Goodier thermoelastic potential must satisfy the 

equation as  Noda et al. [87] is 

Tat
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The Love’s function must satisfy 
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The component of stresses are represented by the use of the 

potential   and Love’s function L as  Noda et al. [87] are 
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Equations (1) to (16) constitute the mathematical formulation 

of the problem under consideration. 

III. SOLUTION OF THE PROBLEM 

Applying finite Marchi-Zgrablich transform defined in [35] 

to the equations (2) and using equations (4), (5) one obtains  
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By using the operational property of finite Marchi-Zgrablich 

transform, we get 

),(
12

2

2

tzg
t

T

k
T

z

T
n 









                                 (18) 

Again, applying Fourier cosine transform to the equation (2), 

we get 
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Equation (8.3.3) is a linear equation whose solution is given  

by 
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Using (3), we get 
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Applying inversion of Fourier cosine transform and Marchi 

Zgrablich transform to the equation (8.3.4),  one obtains 
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These are the desired solutions of the given problem. 

Let us assume Love’s function L , which satisfy condition 

(11) as 
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The displacement potential  is given by 
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IV. DETERMINATION OF DISPLACEMENT FUNCTION 

Substituting the equations (8.3.7) and (8.3.8) in the  equation 

(8.2.8) one obtains 

 

 

 

),,(

)(),,(

210

1

210

1

rkkS
C

tBrkkS
C

Au

n

n n

n

n

n n

n
r


























            

(25)  







































),,(
1

),,(

)1(2

210

1

210

1

2

rkkS
Cr

rkkS
C

u

n

n n

n

n

n n

n

z









         (26)

 

V. DETERMINATION OF STRESS FUNCTIONS 

Substituting the values from the equation (7) and (8) in the 

equation (10) to (13) we get 
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where, 
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VI. SPECIAL CASE 

Set  
))((),( 0

zezrrzrF 
                            (31) 

Applying finite transform defined in Marchi Zgrablich [35] to 

the equation (1) one obtains 

),,()(),( 02100 rkkSezrznF n
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Substituting the value of (2) in the equations (2) to (4) one 

obtains 
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VII. NUMERICAL RESULTS 

Put sec1,5.2,3.2,2  tba   in equations (3) to (11) 

one obtains 
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VIII. MATERIAL PROPERTIES 

The numerical calculation has been carried out for an 

Aluminum (pure) circular plate with the material properties as  

Density ρ =169 lb/ft
 3
 

Specific heat = 0.208  Btu/lbOF 

Thermal conductivity K = 15.9 x 10
6
Btu/(hr. ftOF) 
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Thermal diffusivity α = 3.33  ft
2
/hr. 

Poisson ratio ν = 0.35 

Coefficient of linear thermal expansion   

αt  = 12.84 x 10
-6

1/F 

Lame constantµ  = 26.67 

Young’s modulus of elasticity E = 70G Pa  

IX. DIMENSIONS 

The constants associated with the numerical calculation  are 

taken as  

Radius of the disk a = 2ft 

Radius of the disk b = 2.5 ft 

X. CONCLUSION 

In this study, we develop the analysis for the temperature field 

by introducing the methods of the Marchi- Zgrablich and 

Fourier cosine transform techniques and determined the 

expression for temperature, displacement and thermal stresses 

of a semi-infinite, thick circular beam with known boundary 

conditions which is useful to design of structure or machines 

in engineering applications. 
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