Boundedness of Superposition Operators on the Double Sequence Spaces of Maddox $\mathcal{L}(p)$

Birsen Sağır ${ }^{1}$, Nihan Güngör ${ }^{2}$
${ }^{1}$ Ondokuz MaylsUniversity, Faculty of Sciences And Arts, Department of Mathematics, 55139 Kurupelit Samsun/ Turkey
${ }^{2}$ Gumushane University, Faculty of Engineering and Naturel Sciences, Department of Mathematical Engineering Gumushane/Turkey

Abstract

Sama-ae [18] characterized local boundedness and boundedness of the superposition operator acting from the Maddox sequence spacel (p) into l_{1}. Sağır \& Güngör [14]defined the superposition operator P_{g} where $\boldsymbol{g}: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ by $\boldsymbol{P}_{\boldsymbol{g}}(\boldsymbol{x})=$ $\left(g\left(k, s, x_{k s}\right)\right)_{k, s=1}^{\infty}$ for all real double sequences $\left(x_{k s}\right)$. The main goal of this paper is constructing the necessary and sufficient conditions for the local boundedness and boundedness of the superposition operator P_{g} acting from Maddox double sequence spaces $\mathcal{L}(p) \quad$ into $\quad \mathcal{L}(q) \quad$ where $p=\left(p_{k s}\right)$ and $\boldsymbol{q}=\left(\boldsymbol{q}_{k s}\right) \quad$ is bounded double sequences of positive numbers.

Keywords: Superposition Operators, Local Boundedness, Boundedness, Double Sequence Spaces

I. INTRODUCTION

LEt \mathbb{R} be set of all real numbers, \mathbb{N} be the set of all natural numbers and $\mathbb{N}^{2}=\mathbb{N} \times \mathbb{N}$. Ω denotes the space of all real double sequences which is the vector space with coordinate wise addition and scalar multiplication. Let $x=\left(x_{k s}\right) \in \Omega$. If for any $\varepsilon>0$ there exist $N \in \mathbb{N}$ and $l \in \mathbb{R}$ such that $\left|x_{k s}-l\right|<\varepsilon$ for all $k, s \geq N$, then we call that the double sequence $x=\left(x_{k s}\right)$ is convergent in the Pringsheim's sense and denoted by $p-\lim x_{k s}=l$. The space of all convergent double sequences in the Pringsheim's sense is denoted by C_{p}.The space \mathcal{L}_{p} is defined by
$\mathcal{L}_{p}:=\left\{x=\left(x_{k s}\right) \in \Omega: \sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{p}<\infty\right\}$
where $1 \leq p<\infty$ and $\sum_{k, s=1}^{\infty}=\sum_{k=1}^{\infty} \sum_{s=1}^{\infty}[2,3] . \mathcal{L}_{p}$ is a Banach space with the norm
$\|x\|_{p}=\left(\sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{p}\right)^{\frac{1}{p}}$.
The Maddox space $\mathcal{L}(p)$ is denoted by
$\mathcal{L}(p)=\left\{x=\left(x_{k s}\right) \in \Omega: \sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{p_{k s}}<\infty\right\}$
Where $p=\left(p_{k s}\right)$ is a bounded sequence of positive numbers. Let $\|\cdot\|_{\mathcal{L}(p)}: \mathcal{L}(p) \rightarrow \mathbb{R}$ be defined by

$$
\|x\|_{\mathcal{L}(p)}=\sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{\frac{p_{k s}}{M_{1}}}
$$

where $M_{1}=\max \left\{1, \sup _{k, s \in \mathbb{N}} p_{k s}\right\}$. We can easily show that $\|x\|_{\mathcal{L}(p)} \geq 0,\|x\|_{\mathcal{L}(p)}=0 \quad$ if $\quad x=0$, $\|x\|_{\mathcal{L}(p)}=\|-x\|_{\mathcal{L}(p)} \quad$ and $\quad\|x+y\|_{\mathcal{L}(p)} \leq\|x\|_{\mathcal{L}(p)}+\|y\|_{\mathcal{L}(p)}$ holds for all $x, y \in \mathcal{L}(p) . \|_{\|_{\mathcal{L}(p)}}$ can not be a norm; however, we can define a metric d on $\mathcal{L}(p)$ by letting $d(x, y)=\| x-$ $y \|_{\mathcal{L}(p)}$ for each $x, y \in \mathcal{L}(p)[18,19,21]$.
If we consider the sequence $\left(s_{m n}\right)$ defined by $s_{m n}=$ $\sum_{k=1}^{m} \sum_{s=1}^{n} x_{k s}(m, n \in \mathbb{N})$, then the pair of $\left(\left(x_{m n}\right),\left(s_{m n}\right)\right)$ is called double series. $\operatorname{Also}\left(x_{m n}\right)$ is called thegeneral term of the series and ($s_{m n}$) is called the sequence of partial sum. If the sequence of partial sum ($s_{m n}$) is convergent to a real number s in the Pringsheim's sense, i.e.,
$p-\lim _{m, n} \sum_{k=1}^{m} \sum_{s=1}^{n} x_{k s}=s$
Then the series $\left(\left(x_{m n}\right),\left(s_{m n}\right)\right)$ is called convergence in the Pringsheim's sense, i.e., p-convergent and the sum of series equal to s, and is denoted by
$\sum_{k, s=1}^{\infty} x_{k s}=s$
It is known that if the series is p-convergent, then the p-limit of the general term of the series is zero. There maining term of the series $\sum_{k=1}^{\infty} \sum_{s=1}^{\infty} x_{k s}$ is defined by
$R_{n m}=\sum_{k=1}^{n-1} \sum_{s=m}^{\infty} x_{k s}+\sum_{k=n}^{\infty} \sum_{s=1}^{m-1} x_{k s}+\sum_{k=n}^{\infty} \sum_{s=m}^{\infty} x_{k s}$.
and it is demonstrated briefly with
$\sum_{\max \{k, s\} \geq N} x_{k s}$
for $n=m=N$. It is known that if the series is p-convergent, then the p-limit of the remaining term of the series is zero. Once find before mentioned, and more details in

[1,2,3,9,13,20].

Superposition operators on sequence spaces are discussed by some authors. Petranuarat and Kemprasit[11] have characterized continuity of the superposition operator acting from sequences pace l_{p} into l_{q} with $1 \leq p, q<\infty$. Sağır and Güngör [14] generalized these works as the superposition operator acting from the space \mathcal{L}_{p} into \mathcal{L}_{q} where $1 \leq p, q<$ ∞. Sama-ae [18] characterized local boundedness and boundedness of the superposition operator acting from sequence $\operatorname{space} l(p)$ into l_{1}. Formore details see [4,5,6,7,8,10,11,12,14,15,16,17,19]

Let X, Y be two double sequence spaces. A superposition operator P_{g} on X is a mapping from X into Ω defined by $P_{g}(x)=\left(g\left(k, s, x_{k s}\right)\right)_{k, s=1}^{\infty}$ where the function $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow$ \mathbb{R} satisfies
(1) $g(k, s, 0)=0$ for all $k, s \in \mathbb{N}$.

If $P_{g}(x) \in Y$ for all $x \in X$, we say that P_{g} acts from X into Y and write $P_{g}: X \rightarrow Y$ [14]. Moreover, we shall assume the additionally some of the following conditions:
(2) $g(k, s,$.$) is continuous for all k, s \in \mathbb{N}$
$\left(2^{\prime}\right) g(k, s,$.$) is bounded on every bounded subset of \mathbb{R}$ for all $k, s \in \mathbb{N}$.

It is obvious that if the function $g(k, s,$.$) satisfies the$ condition (2), then g satisfies the condition(2^{\prime}). Also, it is not hard to see that if the function $g(k, s,$.$) is locally bounded on$ \mathbb{R}, then g satisfies condition (2^{\prime}).

Güngör and Sağır [6] characterized the superposition operator P_{g} on $\mathcal{L}(p)$ as the following:

Theorem 1. $P_{g}: \mathcal{L}(p) \rightarrow \mathcal{L}(q)$ if and only if there exist $\alpha>0, \beta>0, N \in \mathbb{N}$ and $\left(c_{k s}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$ such that
$|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}} c_{k s}+\alpha|t|^{\frac{p_{k s}}{M_{1}}}$
whenever $|t| \leq \beta$ for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$.
In this paper, we characterize local boundedness and boundedness of the superposition operator acting from the double sequence space $\mathcal{L}(p)$ into $\mathcal{L}(q)$ where $p=\left(p_{k s}\right)$ and $q=\left(q_{k s}\right)$ is bounded double sequences of positive numbers.

II. MAIN RESULTS

Theorem 2. If $P_{g}: \mathcal{L}(p) \rightarrow \mathcal{L}(q)$, then P_{g} is locally bounded on $\mathcal{L}(p)$ if and only if g satisfies (2^{\prime}).

Proof. Assume that g satisfies (2') and let $z=\left(z_{k s}\right) \in \mathcal{L}(p)$. There exist $N^{\prime} \in \mathbb{N}, \alpha, \beta>0$ and $\left(c_{k s}\right)_{k_{z}, s=1}^{\infty} \in \mathcal{L}_{1}$ such that

$$
\begin{equation*}
|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}} c_{k s}+\alpha|t|^{\frac{p_{k s}}{M_{1}}} \text { whenever }|t| \leq \beta \tag{1}
\end{equation*}
$$

foreach $k, s \in \mathbb{N} \quad$ with $\max \{k, s\} \geq N^{\prime}$. Let
$x=\left(x_{k s}\right) \in \mathcal{L}(p)$ satisfying $\|z-x\|_{\mathcal{L}(p)} \leq \frac{\beta^{\frac{p_{k s}}{M_{1}}}}{2}$. So, we have that
$\sum_{\max \{k, s\} \geq N}\left|z_{k s}-x_{k s}\right|^{\frac{p_{k s}}{M_{1}}} \leq \frac{\beta^{\frac{p_{k s}}{M_{1}}}}{2}$.
Since $z=\left(z_{k s}\right) \in \mathcal{L}(p)$, there exists $N \in \mathbb{N}$ with $N \geq N^{\prime}$
$\sum_{\max \{k, s\} \geq N}\left|z_{k s}\right|^{\frac{p_{k s}}{M_{1}}} \leq \frac{\beta^{\frac{p_{k s}}{M_{1}}}}{2}$.
Byusing (2) and (3), wefind
$\sum_{\max \{k, s\} \geq N}\left|x_{k s}\right|^{\frac{p_{k s}}{M_{1}}}$
$\leq \sum_{\max \{k, s\} \geq N}\left|z_{k s}-x_{k s}\right|^{\frac{p_{k s}}{M_{1}}}+\sum_{\max \{k, s\} \geq N}\left|z_{k s}\right|^{\frac{p_{k s}}{M_{1}}}$
$\leq \beta^{\frac{p_{k s}}{M_{1}}}$
For all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$. We obtain that $\left|x_{k s}\right| \leq$ β, hence we can write
$\sum_{\max \{k, s\} \geq N}\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}}$
$\leq \sum_{\max \{k, s\} \geq N} c_{k s}+\alpha \sum_{\max \{k, s\} \geq N}\left|x_{k s}\right|^{\frac{p_{k s}}{M_{1}}}$
forall $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$ by using (1). Let
$m_{k s}=\sup _{\left|t-z_{k s}\right| \leq \frac{\beta}{2^{\frac{M_{1}}{p_{k s}}}}}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}$.
Since g satisfies condition $\left(2^{\prime}\right)$ we see that $m_{k s}<\infty$ for all $k, s \in \mathbb{N}$. We have
$\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}} \leq m_{k s}$
forall $k, s \in \mathbb{N}$. By using (4) and (5), we obtain

$$
\begin{aligned}
& \left\|P_{g}(x)\right\|_{\mathcal{L}(q)}=\sum_{k, s=1}^{\infty}\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}} \\
& =\sum_{k, s=1}^{N-1}\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}}+\sum_{\max \{k, s\} \geq N}\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}} \\
& \leq \sum_{k, s=1}^{N-1} m_{k s}+\left\|c_{k s}\right\|_{1}+\alpha \beta^{\frac{p_{k s}}{M_{1}}}<\infty .
\end{aligned}
$$

If we take $A=\sum_{k, s=1}^{N-1} m_{k s}+\left\|c_{k s}\right\|_{1}+\alpha \beta^{\frac{p_{k s}}{M_{1}}}<\infty$, then

$$
\begin{aligned}
\left\|P_{g}(x)-P_{g}(z)\right\|_{\mathcal{L}(q)} & \leq\left\|P_{g}(x)\right\|_{\mathcal{L}(q)}+\left\|P_{g}(z)\right\|_{\mathcal{L}(q)} \\
& \leq\left\|P_{g}(z)\right\|_{\mathcal{L}(q)}+A .
\end{aligned}
$$

Let $\gamma=\left\|P_{g}(z)\right\|_{\mathcal{L}(q)}+A, \quad$ then \quad we \quad write $\| P_{g}(x)-$ $\operatorname{Pg} z \mathcal{L}(q) \leq \gamma$. Hence, $P g$ is locally bounded on $\mathcal{L}(p)$.

Conversely, assume that P_{g} is locally bounded on $\mathcal{L}(p)$. To complete the proof, it is sufficient that g is locally bounded on \mathbb{R}. Let $k, s \in \mathbb{N}$ and $a \in \mathbb{R}$. The sequence $y=\left(y_{k s}\right)$ is defined as
$y_{k s}=\left\{\begin{array}{ll}a & , k=n \\ 0 & , \text { others }\end{array} \quad\right.$ and $\quad s=m$
So, it is obvious that $y=\left(y_{k s}\right) \in \mathcal{L}(p)$. From the hypothesis, there exist $\alpha, \beta>0$ such that

$$
\begin{gather*}
\left\|P_{g}(x)-P_{g}(y)\right\|_{\mathcal{L}(q)} \leq \beta \text { whenever }\|x-y\|_{\mathcal{L}(p)} \\
\leq \alpha \tag{6}
\end{gather*}
$$

Also, the sequence $x=\left(x_{k s}\right)$ is defined as
$x_{k s}=\left\{\begin{array}{ll}b & , k=n \\ 0 & , \text { others }\end{array} \quad\right.$ and $\quad s=m$
forall $k, s \in \mathbb{N}$ and $b \in \mathbb{R}$ with $|b-a| \leq \alpha^{\frac{M_{1}}{p_{k s}}}$. So, it is obvious that $x=\left(x_{k s}\right) \in \mathcal{L}(p)$. Hence, we find
$\|x-y\|_{\mathcal{L}(p)}=\sum_{k, s \in \mathbb{N}}\left|x_{k s}-y_{k s}\right|^{\frac{p_{k s}}{M_{1}}}=|b-a|^{\frac{p_{k s}}{M_{1}}} \leq \alpha$.
Therefore, $\left\|P_{g}(x)-P_{g}(y)\right\|_{\mathcal{L}(q)} \leq \beta$ from (6). Then, we obtain

$$
\begin{aligned}
& |g(k, s, b)-g(k, s, a)| \\
& \begin{aligned}
\leq\left(\sum_{k, s=1}^{\infty} \mid g\left(k, s, x_{k s}\right)\right. & \left.-\left.g\left(k, s, y_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}}\right)^{\frac{M_{2}}{q_{k s}}} \\
& =\left\|P_{g}(x)-P_{g}(y)\right\|_{\mathcal{L}(q)}^{\frac{M_{2}}{q_{k s}}} \leq \beta^{\frac{M_{2}}{q_{k s}}}
\end{aligned}
\end{aligned}
$$

Since $b \in \mathbb{R}$ is arbitrary, $g(k, s,$.$) is locally bounded on \mathbb{R}$.
Theorem 3.If $P_{g}: \mathcal{L}(p) \rightarrow \mathcal{L}(q)$, then P_{g} is bounded on $\mathcal{L}(p)$ if and only if for every $\beta>0$ there exist $\alpha(\beta)>0$ and a sequence $c(\beta)=\left(c_{k s}(\beta)\right) \in \mathcal{L}_{1}$ such that

$$
\begin{equation*}
|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}} \leq c_{k s}(\beta)+\frac{2 \alpha(\beta)}{\beta}|t|^{\frac{p_{k s}}{M_{1}}} \tag{7}
\end{equation*}
$$

whenever $|t| \leq \beta$ foreach $k, s \in \mathbb{N}$.
Proof. Suppose that the inequality (7) holds. Let $\beta>0$ and $x=\left(x_{k s}\right) \in \mathcal{L}(p) \quad$ with $\left\|x_{k s}\right\|_{\mathcal{L}(p)} \leq \beta^{\frac{p_{k x}}{M_{1}}}$. Thus, we can write $\sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{\frac{p_{k s}}{M_{1}}} \leq \beta^{\frac{p_{k s}}{M_{1}}}$, that is, $\left|x_{k s}\right| \leq \beta$ for all $k, s \in \mathbb{N}$. By assumption, there are $\alpha(\beta)>0$ and a sequence
$c(\beta)=\left(c_{k s}(\beta)\right) \in \mathcal{L}_{1}$ such that $\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}} \leq c_{k s}(\beta)+$ $\frac{2 \alpha(\beta)}{\beta}\left|x_{k s}\right|^{\frac{p_{k s}}{M_{1}}}$. Since $P_{g}(x)=\left(g\left(k, s, x_{k s}\right)\right) \in \mathcal{L}(q)$, we find

$$
\begin{aligned}
\left\|P_{g}(x)\right\|_{\mathcal{L}(q)} & =\sum_{k, s=1}^{\infty}\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}} \\
& \leq \sum_{k, s=1}^{\infty} c_{k s}(\beta)+\frac{2 \alpha(\beta)}{\beta} \sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{\frac{p_{k s}}{M_{1}}} \\
& \leq \sum_{k, s=1}^{\infty} c_{k s}(\beta)+\frac{2 \alpha(\beta)}{\beta} \beta^{\frac{p_{k s}}{M_{1}}} \\
& \leq \sum_{k, s=1}^{\infty}\left|c_{k s}(\beta)\right|+2 \alpha(\beta) \beta^{\frac{p_{k s}}{M_{1}}-1}
\end{aligned}
$$

Therefore, P_{g} is bounded.
Assume that the P_{g} acting from $\mathcal{L}(p)$ to $\mathcal{L}(q)$ is bounded. Let $\beta>0$. For each bounded double sequence $x=\left(x_{k s}\right)$ with $\|x\|_{\mathcal{L}(p)} \leq \beta$, we have that $\sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{\frac{p_{k s}}{M_{1}}} \leq \beta$. Since P_{g} is bounded, there exists $\alpha(\beta)>0$ such that $\left\|P_{g}(x)\right\|_{\mathcal{L}(q)} \leq$ $\alpha(\beta)<\infty$. Also, g satisfies condition (2').We define
$h_{\beta}(k, s, t)=\max \left\{0,|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}-\frac{2 \alpha(\beta)}{\beta}|t|^{\frac{p_{k s}}{M_{1}}}\right\}$
and
$c_{k s}(\beta)=\sup \left\{h_{\beta}(k, s, t):|t| \leq \beta\right\}$
foreach $k \in \mathbb{N}$. Let $k, s \in \mathbb{N}$ and $t \in \mathbb{R}$ with $|t| \leq \beta$. It is obvious that $|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}} \leq c_{k s}(\beta)+\frac{2 \alpha(\beta)}{\beta}|t|^{\frac{p_{k s}}{M_{1}}} \quad$ if $h_{\beta}(k, s, t)=0$. Suppose that $h_{\beta}(k, s, t) \neq 0$, hence we get $h_{\beta}(k, s, t)=|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}-\frac{2 \alpha(\beta)}{\beta}|t|^{\frac{p_{k s}}{M_{1}}}$. Therefore, wefind $|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}} \leq c_{k s}(\beta)+\frac{2 \alpha(\beta)}{\beta}|t|^{\frac{p_{k s}}{M_{1}}} \quad$ when $\quad|t| \leq \beta$. We will show that $\left(c_{k s}(\beta)\right) \in \mathcal{L}_{1}$. Since g satisfies condition $\left(2^{\prime}\right), h_{\beta}(k, s, t)$ is bounded on every bounded subset of real numbers for all $k, s \in \mathbb{N}$. Then we have that $0 \leq$ $c_{k s}(\beta)<\infty$ for all $k, s \in \mathbb{N}$. By definition of $c_{k s}(\beta)$, we find that for each $\varepsilon>0$, there exists the sequence $y=\left(y_{k s}\right)$ with $\left|y_{k s}\right| \leq \beta$ for all $k, s \in \mathbb{N}$ and
$c_{k s}(\beta)<h_{\beta}\left(k, s, y_{k s}\right)+\frac{\varepsilon}{2^{k+s}}$.
We define the sequence $y^{\prime}=\left(y_{k s}^{\prime}\right)$ suchthat
$y_{k s}^{\prime}=\left\{\begin{array}{cc}y_{k s}, & h_{\beta}(k, s, t)>0 \\ 0, & h_{\beta}(k, s, t)=0\end{array}\right.$.
We can find finite sequences $\left(m_{i}\right)$ and $\left(n_{j}\right)$ with $m_{1}=1<$
$m_{2}<\cdots<m_{r}=m$ and $n_{1}=1<n_{2}<\cdots<n_{r}=n$ for any $m, n \in \mathbb{N}$ such that
$\sum_{k=1}^{m} \sum_{s=1}^{n}\left|y_{k s}^{\prime}\right|^{\frac{p_{k_{s}}}{M_{1}}}$
$=\sum_{i=1}^{r-2} \sum_{j=1}^{r-2}\left(\sum_{k=m_{i}}^{m_{i+1}-1} \sum_{s=n_{j}}^{n_{j+1}-1}\left|y_{k s}^{\prime}\right|^{\frac{p_{k s}}{M_{1}}}\right)$

$$
+\sum_{k=m_{r-1}}^{m} \sum_{s=n_{r-1}}^{n}\left|y_{k s}^{\prime}\right|^{\frac{p_{k s}}{M_{1}}}
$$

with $\frac{\beta}{2} \leq \sum_{k=m_{i}}^{m_{i+1}-1} \sum_{s=n_{j}}^{n_{j+1}-1}\left|y_{k s}^{\prime}\right|^{\frac{p_{k s}}{M_{1}}} \leq \beta$ for $i, j=1,2, \ldots, r-$ 2 and $0 \leq \sum_{k=m_{r-1}}^{m} \sum_{s=n_{r-1}}^{n}\left|y_{k s}^{\prime}\right|^{\frac{p_{k s}}{M_{1}}} \leq \beta$. For each $i, j=$ $1,2, \ldots, r-2$, we set

$$
z^{(i j)}
$$

$$
=\left\{\begin{array}{cc}
y_{k s}^{\prime}, & k \in\left\{m_{i}, m_{i}+1, \ldots, m_{i+1}-1\right\} \text { and } s \in\left\{n_{j}, n_{j}+1, \ldots, n_{j+1}-1\right\} \\
0, & \text { other }
\end{array}\right.
$$

$$
\begin{aligned}
& z^{((r-1)(r-1))} \\
& =\left\{\begin{array}{c}
y_{k s}^{\prime}, \\
0,
\end{array} \quad k \in\left\{m_{r-1}, m_{r-1}+1, \ldots, m_{r}=m\right\} \text { and } s \in\left\{n_{r-1}, n_{r-1}+1, \ldots, n_{r}=n\right\}\right.
\end{aligned}=\sum_{i=1}^{r-2} \sum_{j=1}^{r-2}\left[\sum _ { k = m _ { i } } ^ { m _ { i + 1 } - 1 } \sum _ { s = n _ { j } } ^ { m _ { j + 1 } - 1 } \left(\left|g^{\prime}\left(k, s, y_{k s}^{\prime}\right)\right|^{\frac{q_{k s}}{M_{2}}}\right.\right.
$$

We see that $z^{(i j)}$ is a bounded double sequence and $\sum_{k, s=1}^{\infty}\left|z_{k s}^{(i j)}\right|^{\frac{p_{k s}}{M_{1}}} \leq \beta$ for each $i, j=1,2, \ldots, r-1$. Since P_{g} is bounded, we obtain that $\sum_{k, s=1}^{\infty}\left|g\left(k, s, z_{k s}^{(i j)}\right)\right| \leq$ $\alpha(\beta)$ for alli, $j=1,2, \ldots, r-1$. Thus,

$$
\begin{gather*}
\sum_{k=m_{i}}^{m_{i+1}-1} \sum_{s=n_{j}}^{n_{j+1}-1}\left|g\left(k, s, z_{k s}^{(i j)}\right)\right| \\
\leq \alpha(\beta) \tag{8}
\end{gather*}
$$

for alli, $j=1,2, \ldots, r-2$ and

$$
\begin{gather*}
\sum_{k=m_{r-1}}^{m} \sum_{s=n_{r-1}}^{n}\left|g\left(k, s, z_{k s}^{(i j)}\right)\right| \\
\leq \alpha(\beta) \tag{9}
\end{gather*}
$$

We define
$g^{\prime}(k, s, t)=\left\{\begin{array}{cl}g(k, s, t) & , h_{\beta}(k, s, t)>0 \\ 0 & , h_{\beta}(k, s, t)=0\end{array}\right.$.
We find that

$$
\sum_{k=m_{i}}^{m_{i+1}-1} \sum_{s=n_{j}}^{n_{j+1}-1}\left|g^{\prime}\left(k, s, z_{k s}^{(i j)}\right)\right| \leq \alpha(\beta)
$$

for all $i, j=1,2, \ldots, r-2$ and
$\sum_{k=m_{r-1}}^{m} \sum_{s=n_{r-1}}^{n}\left|g^{\prime}\left(k, s, z_{k s}^{(i j)}\right)\right| \leq \alpha(\beta)$

By using (8) and (9). Therefore, we obtain that

$$
\begin{equation*}
h_{\beta}\left(k, s, y_{k s}\right)=\left|g^{\prime}\left(k, s, y_{k s}^{\prime}\right)\right|^{\frac{q_{k s}}{M_{2}}}-\frac{2 \alpha(\beta)}{\beta}\left|y_{k s}^{\prime}\right|^{\frac{p_{k s}}{M_{1}}} . \tag{10}
\end{equation*}
$$

Byusing (10), we get that

$$
\begin{aligned}
& \sum_{k=1}^{m} \sum_{s=1}^{n} c_{k s}(\beta) \\
& <\sum_{k=1}^{m} \sum_{s=1}^{n} h_{\beta}\left(k, s, y_{k s}\right)+\sum_{k=1}^{m} \sum_{s=1}^{n} \frac{\varepsilon}{2^{k+s}} \\
& =\sum_{i=1}^{r-2} \sum_{j=1}^{r-2}\left(\sum_{k=m_{i}}^{m_{i+1}-1} \sum_{s=n_{j}}^{n_{j+1}-1} h_{\beta}\left(k, s, y_{k s}\right)\right)
\end{aligned}
$$

$$
+\sum_{k=m_{r-1}}^{m} \sum_{s=n_{r-1}}^{n} h_{\beta}\left(k, s, y_{k s}\right)+\sum_{k=1}^{m} \sum_{s=1}^{n} \frac{\varepsilon}{2^{k+s}}
$$

$$
\left.\left.-\frac{2 \alpha(\beta)}{\beta}\left|y_{k s}^{\prime}\right|^{\frac{p_{\mathrm{ks}}}{M_{1}}}\right)\right]
$$

$$
+\sum_{k=m_{r-1}}^{m} \sum_{s=n_{r-1}}^{n}\left(\left|g^{\prime}\left(k, s, y_{k s}^{\prime}\right)\right|^{\frac{q_{k s}}{M_{2}}}-\frac{2 \alpha(\beta)}{\beta}\left|y_{k s}^{\prime}\right|^{\frac{p_{k s}}{M_{1}}}\right)
$$

$$
+\sum_{k=1}^{m} \sum_{s=1}^{n} \frac{\varepsilon}{2^{k+s}}
$$

$$
=\sum_{i=1}^{r-2} \sum_{j=1}^{r-2}\left[\sum _ { k = m _ { i } } ^ { m _ { i + 1 } - 1 } \sum _ { s = n _ { j } } ^ { n _ { j + 1 } - 1 } \left(\left|g^{\prime}\left(k, s, z_{k s}^{(i j)}\right)\right|^{\frac{q_{k s}}{M_{2}}}\right.\right.
$$

$$
\left.\left.-\frac{2 \alpha(\beta)}{\beta}\left|z_{k s}^{(i j)}\right|^{\frac{p_{\mathrm{ks}}}{M_{1}}}\right)\right]
$$

$$
+\sum_{k=m_{r-1}}^{m} \sum_{s=n_{r-1}}^{n}\left(\left|g^{\prime}\left(k, s, z_{k s}^{((r-1)(r-1))}\right)\right|^{\frac{q_{k s}}{M_{2}}}\right.
$$

$$
\left.-\frac{2 \alpha(\beta)}{\beta}\left|z_{k s}^{((r-1)(r-1))}\right|^{\frac{p_{k s}}{M_{1}}}\right)
$$

$$
+\sum_{k=1}^{m} \sum_{s=1}^{n} \frac{\varepsilon}{2^{k+s}}
$$

$$
=(r-2)^{2} \alpha(\beta)+\alpha(\beta)-\frac{2 \alpha(\beta)}{\beta}(r-2)^{2} \frac{\beta}{2}
$$

$+\sum_{k=1}^{m} \sum_{s=1}^{n} \frac{\varepsilon}{2^{k+s}}$
$\leq \alpha(\beta)+\sum_{k=1}^{m} \sum_{s=1}^{n} \frac{\varepsilon}{2^{k+s}}$
Then, $\sum_{k, s=1}^{\infty} c_{k s}(\beta)=\lim _{m, n \rightarrow \infty} \sum_{k=1}^{m} \sum_{s=1}^{n} c_{k s}(\beta) \leq \alpha(\beta)+$
ε Since $\quad \varepsilon>0 \quad$ is arbitrary,
$\sum_{k, s=1}^{\infty} c_{k s}(\beta) \leq \alpha(\beta)$. Hence we get
$\left\|c_{k s}(\beta)\right\|_{1} \leq \alpha(\beta)$. The proof is completed.
Example 1.Let $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by
$g(k, s, t)=\left(\left(\frac{1}{3^{k+s}}+|t|^{\frac{p_{k s}}{M_{1}}}\right)|t|^{p_{k s}}\right)^{\frac{M_{2}}{q_{k s}}}$
For all $k, s \in \mathbb{N}$ and $t \in \mathbb{R}$. Since g satisfies condition (2'), P_{g} is locally bounded on $\mathcal{L}(p)$ from Theorem 2 . Let $\beta>0$ and $t \in \mathbb{R}$ with $|t| \leq \beta$. For each $k, s \in \mathbb{N}$,

$$
\begin{aligned}
|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}} & =\left(\frac{1}{3^{k+s}}+|t|^{\frac{p_{k s}}{M_{1}}}\right)|t|^{p_{k s}} \\
& =\frac{1}{3^{k+s}}|t|^{p_{k s}}+|t|^{\frac{p_{k s}}{M_{1}}}|t|^{p_{k s}} \\
& \leq \frac{\beta^{M_{1}}}{3^{k+s}}+\beta^{M_{1}}|t|^{\frac{p_{k s}}{M_{1}}}
\end{aligned}
$$

Let $\alpha(\beta)=\frac{\beta^{M_{1}+1}}{2}$ and $c_{k s}(\beta)=\frac{\beta^{M_{1}}}{3^{k+s}}$ for \quad all $k, s \in \mathbb{N}$. Therefore, $\quad c_{k s}(\beta) \in \mathcal{L}_{1}$ and $|g(k, s, t)| \leq c_{k s}(\beta)+$ $2 \frac{\alpha(\beta)}{\beta}|t|^{p_{k s}}$. By Theorem $3, P_{g}$ is bounded on $\mathcal{L}(p)$.

Example 2. Let $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by
$g(k, s, t)=\left(\frac{|t|}{k^{4}+s^{4}}+2|t|^{\frac{p_{k s}}{M_{1}}+1}\right)^{\frac{M_{2}}{q_{k s}}}$
For all $k, s \in \mathbb{N}$ and $t \in \mathbb{R}$. Since g satisfies condition($\left.2^{\prime}\right)$, P_{g} is locally bounded on $\mathcal{L}(p)$ from Theorem 2 . Let $\beta>0$ and $t \in \mathbb{R}$ with $|t| \leq \beta$. For each $k, s \in \mathbb{N}$,

$$
\begin{aligned}
|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}} & =\frac{|t|}{k^{4}+s^{4}}+2|t||t|^{\frac{p_{k s}}{M_{1}}} \\
& \leq \frac{\beta}{k^{4}+s^{4}}+2 \beta|t|^{\frac{p_{k s}}{M_{1}}}
\end{aligned}
$$

Let $\alpha(\beta)=\beta^{2}$ and $c_{k s}(\beta)=\frac{\beta}{k^{4}+s^{4}} \quad$ for \quad all $\quad k, s \in \mathbb{N}$. Therefore, $\quad c_{k s}(\beta) \in \mathcal{L}_{1}$ and $|g(k, s, t)| \leq c_{k s}(\beta)+$ $2 \frac{\alpha(\beta)}{\beta}|t|^{p_{k s}}$. By Theorem $3, P_{g}$ is bounded on $\mathcal{L}(p)$.

III. CONCLUSIONS

In this paper, the necessary and sufficient conditions for local boundedness and boundedness of the superposition operator
acting from the double sequence space $\mathcal{L}(p)$ into $\mathcal{L}(q)$ where $p=\left(p_{k s}\right)$ and $q=\left(q_{k s}\right)$ is bounded double sequences of positive numbers are obtained.

REFERENCES

[1] Apostol, T.M., (1974). Mathematical Analysis, Pearson Education Asia Limited and China Machine Press.
[2] Başar, F., Sever, Y.,(2009). The Space of Double Sequences, Math. J. Okayama Univ., 51, 149-157.
[3] Başar, F., (2012).Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul.
[4] Chew, T.S., Lee, P.Y., (1985). Orthogonally Additive Functionals on Sequence Spaces, Southeast Asian Bull. Math., 9, 81-85.
[5] Dedagich, F., Zabreiko, P.P.,(1987). Operator Superpositions in The Spaces l_{p}, Sib. Math. J., 28, 86-98.2
[6] Güngör, N, Sağır B., (2017). Continuity of Superposition Operators on The Double Sequence Spaces of Maddox $\mathscr{L}(p)$, Iranian Journal of Science and Technology, Transactions A: Science, 41(2), 451456.
[7] Herawaty, E.,(2013). The Locally Boundedness Criteria for Superposition Operators on $\ell_{\Phi}(L)$, Applied Mathematical Sciences, 7, 727-733.
[8] Kolk, E., Raidjoe, A., (2007). The Continuity of Superposition Operators on Some Sequence Spaces Defined By Moduli, Czech. Math. J., 57, 777-792.
[9] Limaye, B.V., Zelstser, M., (2009). On The Pringsheim Convergence of Double Series, Proc. Eston. Aca. Sci., 58 (2), 108121.
[10] Oğur, O., (2017). On characterization of boundedness of superposition operators on the Maddox space $C_{r 0}(p)$ of double sequences, New Trends in Mathematical Sciences, 4, 80-88.
[11] Petranuarat, S., Kemprasit, Y., (1997). Superposition Operators on l_{p} and c_{0} into $l_{q}(1 \leq p, q<\infty)$, Southeast Asian Bull. Math., 21, 139-147.
[12] Pluciennik, R. ,(1990). Continuity of Superposition Operators on W_{o} and W_{o}, Commentat. Math. Univ. Carol., 31, 529-542.
[13] Pringsheim A.,(1900). ZurTheorie de ZweifachUnendlichenZahlenfolgen, Math. Ann., 53, 289-321.
[14] Sağır, B., Güngör, N., (2015). Continuity of Superposition Operators on the Double Sequence Spaces \mathscr{L}_{p}, Filomat, 29(9), 2107-2118.
[15] Sağır, B., Güngör, N., (2015). Locally Boundedness and Continuity of Superposition Operators on The Double Sequence Spaces $C_{r 0}$, J Computational Analysis and Applications, 19, 365-377.
[16] Sağır B., Güngör N. ,(2015). Continuity of Superposition Operators on The Double Sequence Spaces of Maddox $C_{r 0}(p)$, Romanian Journal Of Mathematics and Computer Science, 5,(1), 35-45.
[17] Sağır, B., Erdoğan, F. (2019).On Characterization of NonNewtonianSuperpositionOperators inSomeSequenceSpaces, Filomat, 33(9), 2601-2612, https://doi.org/10.2298/FIL1909601S.
[18] Sama-ae, A., (1997). Boundedness of Superposition Operators on The Sequence Spaces of Maddox, Master Thesis, Chiang Mai University.
[19] Sama-ae, A., (2002). Boundedness and Continuity of Superposition Operator on $E_{r}(p)$ and $F_{r}(p)$, Songklanakarin J. Sci. Technol., 24, 452-466.
[20] Streit, R. F., (1972) The Summation of Convergent Double Series, Texas Tech University.
[21] Türkmenoğlu, A., (1993).Bazı Çifṫ̇ndisliDizi Uzayları, PhD Thesis, Firat University.

