On The Non-Linear Diophantine Equation $[19]^{2 m}+\left[2^{2 r+1}-1\right]=\rho^{2}$

Sudhanshu Aggarwal ${ }^{1 *}$, Sanjay Kumar ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, National Post Graduate College, Barhalganj, Gorakhpur-273402, U.P., India
${ }^{2}$ Associate Professor, Department of Mathematics, M. S. College, Saharanpur-247001, U.P., India
*Corresponding Author

Abstract

Diophantine equations are very useful while studying certain problems of coordinate geometry, cryptography, trigonometry and applied algebra. In the present paper, authors studied the non-linear Diophantine equation [19] ${ }^{2 m}+$ $\left[2^{2 r+1}-1\right]=\rho^{2}$, where m, r, ρ are whole numbers, for determining its solution in whole number. Results show that the non-linear Diophantine equation $[19]^{2 m}+\left[2^{2 r+1}-1\right]=\rho^{2}$, where m, r, ρ are whole numbers, has no solution in whole number.

Keywords: Non-linear Diophantine equation; Congruence; Modulo system; Numbers.
Mathematics Subject Classification: 11D61, 11D72, 11D45.

I. INTRODUCTION

To determine the solutions of Diophantine equations have many challenges for scholars due to absence of generalize methods. Congruences play an important role for solving some Diophantine equations [1]. Fermat's method of descent is also used for determining the solution of some Diophantine equations [1]. Aggarwal et al. [2] discussed the Diophantine equation $223^{x}+241^{y}=z^{2}$ for solution. Existence of solution of Diophantine equation $181^{x}+199^{y}=z^{2}$ was given by Aggarwal et al. [3]. Bhatnagar and Aggarwal [4] proved that the exponential Diophantine equation $421^{p}+$ $439^{q}=r^{2}$ has no solution in whole number. Gupta and Kumar [5] gave the solutions of exponential Diophantine equation $n^{x}+(n+3 m)^{y}=z^{2 k}$.

Kumar et al. [6] studied exponential Diophantine equation $601^{p}+619^{q}=r^{2}$ and proved that this equation has no solution in whole number. The non-linear Diophantine equations $61^{x}+67^{y}=z^{2}$ and $67^{x}+73^{y}=z^{2}$ are studied by Kumar et al. [7]. They determined that the equations $61^{x}+67^{y}=z^{2}$ and $67^{x}+73^{y}=z^{2}$ are not solvable in nonnegative integers. Kumar et al. [8] examined the non-linear Diophantine equations $31^{x}+41^{y}=z^{2}$ and $61^{x}+71^{y}=z^{2}$. They proved that the equations $31^{x}+41^{y}=z^{2}$ and $61^{x}+$ $71^{y}=z^{2}$ are not solvable in whole numbers. Mishra et al. [9] gave the existence of solution of Diophantine equation $211^{\alpha}+229^{\beta}=\gamma^{2}$ and proved that the Diophantine equation $211^{\alpha}+229^{\beta}=\gamma^{2}$ has no solution in whole number.

Diophantine equations help us for finding the integer solution of famous Pythagoras theorem and Pell's equation [10-11]. Sroysang [12, 15] studied the Diophantine equations $8^{x}+$ $19^{y}=z^{2}$ and $8^{x}+13^{y}=z^{2}$. He determined that $\{x=$ $1, y=0, z=3\}$ is the unique solution of the equations $8^{x}+$ $19^{y}=z^{2}$ and $8^{x}+13^{y}=z^{2}$. Sroysang [13] studied the Diophantine equation $31^{x}+32^{y}=z^{2}$ and determined that it has no positive integer solution. Sroysang [14] discussed the Diophantine equation $3^{x}+5^{y}=z^{2}$. Goel et al. [16] discussed the exponential Diophantine equation $M_{5}{ }^{p}+M_{7}{ }^{q}=$ r^{2} and proved that this equation has no solution in whole number.

Kumar et al. [17] proved that the exponential Diophantine equation $\left(2^{2 m+1}-1\right)+\left(6^{r+1}+1\right)^{n}=\omega^{2}$ has no solution in whole number. The exponential Diophantine equation $\left(7^{2 m}\right)+(6 r+1)^{n}=z^{2}$ has studied by Kumar et al. [18]. Aggarwal and Sharma [19] studied the non-linear Diophantine equation $379^{x}+397^{y}=z^{2}$ and proved that this equation has no solution in whole number. Aggarwal and others [20-22] studied the Diophantine equations $193^{x}+211^{y}=$ $z^{2}, 313^{x}+331^{y}=z^{2}$ and $331^{x}+349^{y}=z^{2}$. They proved that these equations have no solution in whole number.
The main object of the present paper is to determine the solution of non-linear Diophantine equation $[19]^{2 m}+$ $\left[2^{2 r+1}-1\right]=\rho^{2}$, where m, r, ρ are whole numbers, in whole numbers.

Preliminaries:

Lemma: 1 The non-linear Diophantine equation $[19]^{2 m}+$ $1=\rho^{2}$, where m, ρ are the whole numbers, is not solvable in whole number.
Proof: Since $[19]^{2 m}$ is an odd number for all whole number m, so $[19]^{2 m}+1=\rho^{2}$ is an even number for all whole number m.
$\Rightarrow \rho$ is an even number.
$\Rightarrow \rho^{2} \equiv 0(\bmod 3)$ or $\rho^{2} \equiv 1(\bmod 3)$
Now, $19 \equiv 1(\bmod 3)$, for all whole number m.
$\Rightarrow[19]^{2 m} \equiv 1(\bmod 3)$, for all whole number m.
$\Rightarrow[19]^{2 m}+1 \equiv 2(\bmod 3)$, for all whole number m.
$\Rightarrow \rho^{2} \equiv 2(\bmod 3)$
The result of equation (2) denies the result of equation (1).
Hence the non-linear Diophantine equation [19] ${ }^{2 m}+1=\rho^{2}$, where m, ρ are the whole numbers, is not solvable in whole number.

Lemma: 2 The non-linear Diophantine equation $1+$ $\left[2^{2 r+1}-1\right]=\rho^{2}$, where r, ρ are whole numbers, is not solvable in whole number.

Proof: Since $\left[2^{2 r+1}\right]$ is an even number for all whole number r so $\left[2^{2 r+1}-1\right]$ is an odd number for all whole numbers r.
Now, $1+\left[2^{2 r+1}-1\right]=\rho^{2}$ is an even number for all whole numbers r.
$\Rightarrow \rho$ is an even number
$\Rightarrow \rho^{2} \equiv 0(\bmod 3)$ or $\rho^{2} \equiv 1(\bmod 3)$
Now $\left[2^{2 r+1}-1\right] \equiv 1(\bmod 3)$, for all whole number r.
$\Rightarrow 1+\left[2^{2 r+1}-1\right] \equiv 2(\bmod 3)$, for all whole numbers r.
$\Rightarrow \rho^{2} \equiv 2(\bmod 3)$
The result of equation (4) denies the result of equation (3).
Hence the non-linear Diophantine equation $1+\left[2^{2 r+1}-1\right]=$ ρ^{2}, where r, ρ are whole numbers, is not solvable in whole number.

II. MAIN THEOREM

The non-linear Diophantine equation $[19]^{2 m}+\left[2^{2 r+1}-1\right]=$ ρ^{2}, where m, r, ρ are whole numbers, is not solvable in whole number.

Proof: The complete proof of this theorem has four parts.
Part: 1 If $m=0$ then the non-linear Diophantine equation $[19]^{2 m}+\left[2^{2 r+1}-1\right]=\rho^{2} \quad$ becomes $1+\left[2^{2 r+1}-1\right]=\rho^{2}$, which is not solvable in whole numbers according to lemma 2.

Part: 2 If $r=0$ then the non-linear Diophantine equation $[19]^{2 m}+\left[2^{2 r+1}-1\right]=\rho^{2}$ becomes $[19]^{2 m}+1=\rho^{2}$, which is not solvable in whole numbers according to lemma 1.
Part: 3 If m, r are natural numbers, then $[19]^{2 m},\left[2^{2 r+1}-1\right]$ are odd numbers.
$\Rightarrow[19]^{2 m}+\left[2^{2 r+1}-1\right]=\rho^{2}$ is an even number
$\Rightarrow \rho$ is an even number
$\Rightarrow \rho^{2} \equiv 0(\bmod 3)$ or $\rho^{2} \equiv 1(\bmod 3)$
Now $19 \equiv 1(\bmod 3)$
$\Rightarrow[19]^{2 m} \equiv 1(\bmod 3)$ and $\left[2^{2 r+1}\right] \equiv 2(\bmod 3)$
$\Rightarrow[19]^{2 m} \equiv 1(\bmod 3)$ and $\left[2^{2 r+1}-1\right] \equiv 1(\bmod 3)$
$\Rightarrow[19]^{2 m}+\left[2^{2 r+1}-1\right] \equiv 2(\bmod 3)$
$\Rightarrow \rho^{2} \equiv 2(\bmod 3)$
The result of equation (6) denies the result of equation (5).
Hence the non-linear Diophantine equation $[19]^{2 m}+$ $\left[2^{2 r+1}-1\right]=\rho^{2}$, where m, r are positive integers and ρ is whole number, is not solvable in whole number.
Part: 4 If $m, r=0$, then $[19]^{2 m}+\left[2^{2 r+1}-1\right]=1+1=$ $2=\rho^{2}$, which is impossible because ρ is a whole number. Hence the non-linear Diophantine equation $[19]^{2 m}+$ $\left[2^{2 r+1}-1\right]=\rho^{2}$, where $m, r=0$ and ρ is whole number, is not solvable in whole number.

III. CONCLUSION

In this paper, authors successfully studied the non-linear Diophantine equation $[19]^{2 m}+\left[2^{2 r+1}-1\right]=\rho^{2}$, where m, r, ρ are whole numbers, for its solution in whole numbers. They determined that the non-linear Diophantine equation $[19]^{2 m}+\left[2^{2 r+1}-1\right]=\rho^{2}$, where m, r, ρ are whole numbers, is not solvable in whole number.

REFERENCES

[1] Stark, H.M. (1970) An introduction of number theory, Markham Pub. Co., Chicago.
[2] Aggarwal, S., Sharma, S.D. and Singhal, H. (2020) On the Diophantine equation $223^{x}+241^{y}=z^{2}$, International Journal of Research and Innovation in Applied Science, 5 (8), 155-156.
[3] Aggarwal, S., Sharma, S.D. and Vyas, A. (2020) On the existence of solution of Diophantine equation $181^{x}+199^{y}=z^{2}$, International Journal of Latest Technology in Engineering, Management \& Applied Science, 9 (8), 85-86.
[4] Bhatnagar, K. and Aggarwal, S. (2020) On the exponential Diophantine equation $421^{p}+439^{q}=r^{2}$, International Journal of Interdisciplinary Global Studies, 14(4), 128-129.
[5] Gupta, D. and Kumar, S. (2020) On the solutions of exponential Diophantine equation $n^{x}+(n+3 m)^{y}=z^{2 k}$, International Journal of Interdisciplinary Global Studies, 14(4), 74-77.
[6] Kumar, A., Chaudhary, L. and Aggarwal, S. (2020) On the exponential Diophantine equation $601^{p}+619^{q}=r^{2}$, International Journal of Interdisciplinary Global Studies, 14(4), 29-30.
[7] Kumar, S., Gupta, S. and Kishan, H. (2018) On the non-linear Diophantine equations $61^{x}+67^{y}=z^{2}$ and $67^{x}+73^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18(1), 91-94.
[8] Kumar, S., Gupta, D. and Kishan, H. (2018) On the non-linear Diophantine equations $31^{x}+41^{y}=z^{2}$ and $61^{x}+71^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18(2), 185-188.
[9] Mishra, R., Aggarwal, S. And Kumar, A. (2020) On the existence of solution of Diophantine equation $211^{\alpha}+229^{\beta}=\gamma^{2}$, International Journal of Interdisciplinary Global Studies, 14(4), 78-79.
[10] Mordell, L.J. (1969) Diophantine equations, Academic Press, London, New York.
[11] Sierpinski, W. (1988) Elementary theory of numbers, $2^{\text {nd }}$ edition, North-Holland, Amsterdam.
[12] Sroysang, B. (2012) More on the Diophantine equation $8^{x}+$ $19^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 81(4), 601-604.
[13] Sroysang, B. (2012) On the Diophantine equation $31^{x}+32^{y}=$ z^{2}, International Journal of Pure and Applied Mathematics, 81(4), 609-612.
[14] Sroysang, B. (2012) On the Diophantine equation $3^{x}+5^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 81(4), 605-608.
[15] Sroysang, B. (2014) On the Diophantine equation $8^{x}+13^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 90(1), 6972.
[16] Goel, P., Bhatnagar, K. and Aggarwal, S. (2020) On the exponential Diophantine equation $M_{5}{ }^{p}+M_{7}{ }^{q}=r^{2}$, International Journal of Interdisciplinary Global Studies, 14(4), 170-171.
[17] Kumar, S., Bhatnagar, K., Kumar, A. and Aggarwal, S. (2020) On the exponential Diophantine equation $\left(2^{2 m+1}-1\right)+$ $\left(6^{r+1}+1\right)^{n}=\omega^{2}$, International Journal of Interdisciplinary Global Studies, 14(4), 183-184.
[18] Kumar, S., Bhatnagar, K., Kumar, N. and Aggarwal, S. (2020) On the exponential Diophantine equation $\left(7^{2 m}\right)+(6 r+1)^{n}=z^{2}$,

International Journal of Interdisciplinary Global Studies, 14(4), 181-182.
[19] Aggarwal, S. and Sharma, N. (2020) On the non-linear Diophantine equation $379^{x}+397^{y}=z^{2}$, Open Journal of Mathematical Sciences, 4(1), 397-399. DOI: 10.30538/oms2020.0129
[20] Aggarwal, S. (2020) On the existence of solution of Diophantine equation $193^{x}+211^{y}=z^{2}$, Journal of Advanced Research in Applied Mathematics and Statistics, 5(3\&4), 1-2.
[21] Aggarwal, S., Sharma, S.D. and Sharma, N. (2020) On the nonlinear Diophantine equation $313^{x}+331^{y}=z^{2}$, Journal of Advanced Research in Applied Mathematics and Statistics, 5(3\&4), 3-5.
[22] Aggarwal, S., Sharma, S.D. and Chauhan, R. (2020) On the nonlinear Diophantine equation $331^{x}+349^{y}=z^{2}$, Journal of Advanced Research in Applied Mathematics and Statistics, 5(3\&4), 6-8.

