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Abstract: Blockchain applications are powered by smart 

contracts which perform crypto exchanges according to the 

policies set by developers. These transactions are free-of-conflict 

and transparent. Though at the end of day these are all computer 

programs which means they are not immune from bugs. In this 

paper We focus on most common and deadly vulnerability called 

re-entrancy, which has caused numerous DAO and DeFi attacks 

costing millions to organizations and end-users alike. We have 

researched all sub-types of re-entrancies and hence proposed a 

novel solution to mitigate them all by ensuring all state changes 

happen before calling external smart contracts and using 

function modifiers to apply mutual exclusion lock like protocol to 

prevent it. Moreover, we have also compared my solution with 

that of other solutions been proposed on scale of their gas cost 

efficiency. 

Index Terms: Blockchain, Decentralized market, Smart contracts, 

Re-entrancy, Mutual exclusion lock. 

I. INTRODUCTION 

he past decade has seen tremendous strides of 

development in blockchain sector. According to 

estimates, it is bound to grow by 85.9 percent annually. Smart 

Contracts are building blocks of blockchain applications they 

are basically programs written in solidity to create a type of 

policy to govern day-to-day workings of those applications. 

User can invoke specific contracts functions by sending 

transactions over blockchain using internal payments system 

know as Gas. These transactions include exchange of 

cryptocurrency for performing real-world transactions. 

Generally, these provide a safe mode of transactions but still 

they are being exposed to certain vulnerabilities. There is a 

potential threat to monetary and intellectual assets of 

application it targets. We have focused on most common but 

not so easy to resolve bug call re-entrancy attack. We have 

discussed in this paper various types of re-entrnacies and their 

respective detrimental effect on applications of various use-

cases like that of infamous DAO and also certain recent 

attacks on DeFi applications as well. Then further we have 

presented a novel solution for addressing each of these attacks. 

Additionally, we have displayed the gas cost efficiency of all 

the methods proposed by previous researchers.  

 

II. BLOCKCHAIN BACKGROUND KNOWLEDGE 

  This section contains some background knowledge about 

common terms used in blockchain and also throughout this 

research paper: 

 1) Smart Contract: A smart contract is a transaction 

protocol which is intended to automatically execute, control or 

document legally relevant events and actions according to 

terms of a contract or an agreement. 

 2) Re-entrancy: A smart contract vulnerability which 

occurs when a function makes an external call to another 

untrusted contract and then in-turn that untrusted contract 

makes a call back to the original function in an attempt to 

drain funds(in our case ethers). 

 3) Mutual exclusion lock: A protocol used to ensure that 

at any given time only trusted thread of function is able to 

access/modify the information stored. 

 4) Function modifiers: They are used to modify behavior 

of a function. First to create a modifier with or without 

parameters, the body of function is inserted with „_;‟ in the 

definition of function. 

 5) Fallback functions: The fallback functions are an 

integral part of solidity protocol. When none of the function 

whose name exists is triggered by some external function call, 

the contract cannot receive ethers. This condition throws an 

exception. Only if a fallback exists are such functions been 

executed.  

III. EXISTING SYSTEMS AND THEIR LIMITATIONS 

 In blockchain ecosystem, to mitigate such vulnerabilities 

numerous authors have been successful in detecting as well as 

preventing re-entrancy. Through my extensive research We  

came to know that though the methods used were successful in 

mitigating the issue there were more scalability issues due to 

higher gas costs and also the methods were only applicable 

during development and testing phase. 

 In the RA: Hunting for re-entrancy attacks in ethereum 

smart contract via static analysis by Yuchiro and Naoto they 

have used tool RA a static analysis providing inter-contract 
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analysis of reverse engineered EVM Bytecode to detect smart 

contract vulnerabilities. Re-entrancy is one such bug they have 

tested upon.  Though it fails when many-to-many external 

contract calls are made in fraction of seconds i.e it‟s not 

scalable.[2] 

 In ReGuard: finding re-entrant bugs in smart contracts 

Chao and Han Liu have proposed a dynamic analyser which 

leverages fuzzing based techniques to generate random and 

diverse conditions for it to detect bugs with lesser number of 

false positives and negative detections, though it‟s mostly used 

for complex contracts with limited attack scenarios.[1] 

 In mechanism to detect re-entrancy in smart contracts 

Alex Ng and Paul Watters have proposed solution based on 

continuos comparison between total and contract balances of 

all participants throughout it‟s execution. Though it‟s not so 

resilient towards novel attack patterns and contracts which are 

been already deployed.[3] 

 In re-entrancy vulnerability identification in ethereum 

smart contracts Naoma and Manar have proposed a 

combination of dynamic and static analyser framework, 

though it does not base itself by superior standards set by 

ReGuard Tool.[4] 

 In Towards automated re-entrancy detection for smart 

contracts based on sequential models Roger and Xun have 

applied deep learning techniques to identify anomalous 

patterns, though BLSTM-ATT incurs and FPR(false positive 

rates) of 8.75%.[5] 

 In contract Fuzzer: fuzzing the smart contracts for 

vulnerability detection Bo, Ye and W.K Chan have covered 

wide variety of detecting re-entrancies, though they have not 

done so for all the sub-types of re-entrancies.[6] 

 In sereum: protecting existing contracts from re-entrnacy 

authors Michael and Lucas have discussed various types of re-

entranacies and their preventive methodologies.[7] 

 In evaluating upgradeable smart contracts Van and Sheng 

have discussed a comprehensive data-proxy pattern to isolate 

the external calls, though in-order to apply to any system they 

have proposed further work on it. As in exisiting systems they 

observed a considerable scalability and gas cost issues.[8] 

 In Solidity check checking bugs in smart contract through 

regular expressions authors Pencheng and Feng have proposed 

a regular expression and programmatic instrumentations to 

detect bugs in smart contracts, though it have very low 

accuracy rate and cannot even re-iterate/Feedback the detected 

information which is pretty useless if we consider already 

deployed contracts.[9] 

 In smartcheck: static analysis of ethereum smart contracts 

authors Sergei, Ramil, Yaroslav and Ivan have converted 

solidity source contract code to pure xml representations and 

have checked it again with XPath patterns found in re-

entrancy bugs, though it fails todo any taint analysis or even 

manual edits which during annual EIPs of solidity are standard 

essential practices.[10] 

 Also some prevention systems are built some of them are 

discussed below: 

a) Checks-Effects interactions: The checks in beginning 

of code ensure that calling entity is in position to call 

the specific external function. Only after that 

specified effects are applied and state variables are 

been updated. 

b) Nuclear option: Any time we send ether i.e transfer 

funds to untrusted address or interact with unknown 

contract(such as calling transfer) of a user-provided 

token address, we open ourself to vulnerabilities, to 

mitigate such situation we design contracts that 

neither send ether nor call untrusted contracts, though 

it will severly decrease transparency of contract and 

will further encourage 3
rd

 party associations. 

c) Pullpayment: A stratergy where paying contract 

doesn‟t interact directly with the receiver account, 

which must withdraw it‟s payments itself. They are 

considered best practise security wise and transfer of 

funds. They also prevent receipeints from blocking 

executions and mitigates risks of re-entrancies. 

d) Pausable: Pausable is a module in solidity used via 

concept of inheritance. Once the modifier functions 

are put in place they allow children contracts to 

implement an emergency stop mechanism that can be 

triggered by an authorized account. 

IV. TYPES OF RE-ENTRANCY ATTACKS 

In this section, we discuss various types of re-entrancies. 

a) Single function re-entrancy: This type of attack is 

simplest and easiest to prevent. It occurs when the 

vulnerable function is same function the attacker is 

trying to recursively call.[7] 

b) Cross-function attack: These attacks are harder to 

detect, it‟s only possible when a vulnerable function 

shares state with another function that has a desirable 

effect for the attacker.[7] 

c) Delegated re-entrancy attack: This form of attack 

hides vulnerabilities within a DELEGATECALL or 

CALLCODE instructions. These EVM instructions 

allow contract to invoke function of another contract 

in context of an external call.[7] 

d) Create-Based re-entrancy: It is similar to delegated 

attack. It basically created a new contract and it‟s 

constructor function using NEW keyword in EVM 

instructions. This new contract is a trusted one, hence 

new contract can call external malicious contract 

using it‟s newly minted constructor function. This 

allows attacker to re-enter the victim contract and 

exploit the inconsistent state. [7] 
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V. IMPLEMENTATION AND RESULTS 

 We have implemented four conditional smart contracts. 

They are programmed with a particular vulnerability in mind. 

These open smart contracts have all sub-types of re-entrancy 

bugs. We have uploaded all smart contract on my github 

profile for reference purpose 

https://github.com/psusmit/Mitigate_re-entrancy, they help in 

understanding how each vulnerability can be present in 

different types of situations. Furthermore,  we have also 

uploaded an attacker‟s contract to hit victim contracts with re-

entrancies and also uploaded the proposed solution them. Let‟s 

discuss them in brief: 

a) Simple Dao: This contract works pretty much as the 

DAO which got infamously hacked. It has a state 

inconsistency and single attacker contract which re-

enters the victim contract  and sweeps all the funds. This 

has single-function re-entrancy bug. 

 

Fig 1- Simple DAO‟s attacker contract 

Here, we see that Mallory is an external contract used to set 

address to original DAO contract. 

 

Fig 2- Simple DAO‟s smart contract in solidity 

In simple DAO contract we donate funds and query to address 

which has those funds. Also we have withdraw function where 

bug is present to send funds from DAO contract to attacker 

contract.  

 

Fig 3- Single function attack success 

b) Token Exchange Protocol: In token exchange there are 

multiple users at play. Basically what this smart contract 

does is exchange ether funds with their respectively 

priced Tokens. Here as the utility requires multiple states 

to be maintained detecting and preventing a re-entry 

becomes complex.  

 

Fig 4- Token smart contract 

This contract keeps track of multiple users. A user can send 

ether to this contract and exchange ether funds for token and 

also vice versa. 

 

Fig 5- Various crypto-exchange functions in token protocol smart contract 

This contract supports various utility functions for 

transferring, exchaning ether and tokens. Note that this 
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probably makes it hard for algorithms built to mitigate risks to 

detect and prevent re-entries.  

 

Fig 6- Vulnerable function 

This function is abused by attacker during his re-

entrancy attack phase.  

 

Fig 7- Token‟s attacker smart contract 

This is attacker contract which exchages nearly all toekn 

amount deposited in last transaction. And also withdrawall 

function will be called at moment where states are not updated 

properly.  

 

Fig 8- cross-function attack success 

c) Dynamic safesending: This contract has built in dynamic 

library called SafeSending, which performs simple an 

external call leading to the problem of delegated re-entry.  

 

Fig 9- Safesending library 

d) This contract has safesending dynamic library which 

misuses the the unsafe CALL behind delegatecall bug, though 

in more realistic scenario a more complex and safe call will be 

made. 

 

Fig 10- Banking smart contract 

Instead of sending transfer,call or send instruction a transfer 

instruction without proper assessment is passed to library 

contract, which handles sending of ether. This in turn updates 

the state after DELEGATECALL instruction is made. 

 

Fig 11- Delegated attacker‟s smart contract 
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This attacker contract is pretty vicious as it extract 2x the 

amount deposited by victim and stops the execution right at 

second re-entrancy to avoid raising the out-of-gas error.  

 

Fig 12- Delegated attack success 

e) Untrusted Intermediary: This is similar to delegate call 

just it used CALL instructions and an intermediary 

constructor to make a malicious external call.  

 

Fig 13- Untrusted Intermediary smart contract 

f) This contract holds funds untill owner decides to 

withdraw. While, the constructor registers itself with new 

owner and calls him i.e attacker. Now this instruction passes 

to an untrusted 3
rd

 party. 

 

Fig 14- Banking intermediary smart contract 

NEW keyword is used to call new contract, which 

immediately runs it‟s contructor which is seen as an external 

call to another contract. Even though the contract can be 

“trusted” then too it can perform problematic executions in the 

future. Ie. Updation of state after CREATE instruction‟s been 

called. 

 

Fig 15- Intermediary Attacker‟s smart contract 

This is the attacker function which deposits some ethers and 

then withdraws  it again. Then it calls for new intermediary 

contract, which is holding the funds until we retrieve it. This 

unfortunately triggers registery intermediary which drains the 

funds. Now note that already the contract has been 

underflowed with cash and thus attacker will see a huge rise in 

it‟s own funds. 

 

Fig 16- Registery function to store values 

This is registerIntermediary function which sweeps the 

balance on malicious 3
rd

 party calls, and also it stops at second 

loop to prevent out-of-gas error and obsfuscate the “natural” 

state updation instructions of smart contracts.  
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Fig 17- Create-based attack success 

g) NoRe-entrancyGuard on simple function re-entrnacy: We 

observed in each of the attacks that the issue of re-entrnacy 

state updations was that another external contract was been 

maliciously called by attacker contract and some executions 

(basically illegally re-entrering) systems were been performed. 

Instead of focusing on control flow graph of a contract‟s 

execution cycle, which most of other research is based on, We 

concentrated on the illegal executions while hijacking a 

resource aspect of it. We realised that it was a classical case of 

Deadlock. Whereby the contracts functions were not mutually 

exclusive. So we tried a mutual exclusion lock on smart 

contract and it was successful. Below is the image 

representing the successful implementation 

 

Fig 18- NoRe-entrant mutual exclusion protocol 

The above contract checks for lock during executing a smart 

contract if none is present then it first halts the execution adds 

a lock then carries on it‟s execution. Although it does not halt 

the executions if already a lock is present. 

Our novel solution can be applied to simple function re-

entrancy bug. The simple DAO contract has a withdraw() 

function which basically sends ether to external malicious 

contract, by applying our lock and switching the order of 

update and external call in it. 

 

Fig 19- Attack prevented by our solution 

When attacker tries to exploit our re-entrancy and re-enter the 

contract to flush funds a lock is implemented which throws 

him an error of “failed to send ether”. The lock is un-locked 

only when the final state is updated till that time no transfer() 

function occurs.This also generated very little downtime for 

other users.  

f)Pullpayment protocol on cross-function re-entrancy: 

Pullpayment protocol can be applied to cross function 

vulnerability. Our second attack contract of token exchange 

has multiple states to be maintained. Pullpayments uses an 

escrow contract to deposit all of ethers to it‟s own contract 

before transfering it to other contracts. Hence, even if an 

attacker to make re-entrancy detection more complicated used 

multiple function having recursive loops to dis-maintain states 

and then flush out ethers in confusion our pullpayment 

protocol before transfering it to attacker can keep funds in 

escrow contract update the states and then only authorizes 

fund transfers otherwise it cannot be done. Also we can use 

our No re-entrnacy lock protocol in conjecture with 

pullpayments to avoid further writes from happening to 

contract before previous states are been properly maintained.  

 

Fig 20- Pullpayment protocol 

The above skeleton represents how an escrow contract is 

created and a constructor function deposits funds before 

finally transfering it to main destination.  
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Fig 21- Cross function attack failed due to pullpayment protocol 

g) Check-Effects on Delegated re-entrnacy:This protocol is 

used in third attack pattern called dynamic safesending having 

a delegated re-entrnacy. It basically reduces the attack surface 

area of malicious contract trying to hijack control flow after an 

external call such as (CALLCODE / DELEGATECALL)is 

made. For this reason a detection algorith to find out the lines 

of code vulnerable to attack must be known beforehand. Then 

it used require() method to check the correctness of the state 

and for effects the lines identifed are adjusted for user balance. 

And make sure all transfer() operations happen in last line to 

avoid re-entrancy.  

 

Fig 22- Checks-effects skeleton 

The above skeleton will check the effects of detected delegate 

calls and will adjust the balance of our contract and place 

transfer operation on last line.  

 

Fig 23- Delegated re-entrancy detected and failed 

h) Nuclear option:- For the fourth attack of create-based re-

entrancy we did an extensive study and found no detection 

method suitable to detect this type of bug. Only an expert 

develeoper having knowledge of such attack can detect it. To 

prevent it we have nuclear method which is highly resource 

intensive. In create-based attack the attacker creates a different 

intermediary contract and fools the main contract by attacking 

it‟s EVM deployment behavior rather than attacking it‟s 

contract logic which is done by other three mentioned bugs. 

We have applied require(tx.origin==msg.sender) function to 

detect third intermediary contract created by attacker and 

refused to transfer any funds if such pattern occurs. An 

attacker can also hijack contract‟s process before it‟s 

contructor function can even deploy it to an address. Thus 

nuclear option applies tx.origin snippet to avoid such 

malicious contracts. Furthermore it‟s essential for this method 

to have a “whitelist of trusted contracts” to work which means 

maintaing a huge database which means additonal cost to 

maintain it and less scalability.  

 

Fig 24- New keyword creates intermediate contract 

 

Fig 25- Calls the intermediate contract having funds. 
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Fig 26- Attacker contract calls the intermediate contracts to transfer funds to 
attacker. 

The factor to consider while building any new solutions and 

incorporating them into existing systems is scalability and 

cost. In our case of crypto-exchanges scalability is directly 

dependent upon cost i.e the transaction gas fees. Hence, we 

have calculated the gas fees of each of the preventative 

method mentioned thus far on all of the sub-types of re-

entrancies. 

 

Fig 27- A comparative study of solutions on all sub-types of re-

entrancies. 

The above provided graph feature cost converted to 

INR(indian rupee) from ethereum on y-axis and subtypes of 

all re-entrancy attack patterns on x-axis. Legends for each 

preventative method is provided above the graph. Looking at 

the graph, we notice some blank spaces that is because other 

researchers have not tested their models on delegate and 

create-based re-entrancy vulnerabilities. From the bar chart 

above we observe that for single function bug, nuclear option 

works best and our solution does moderatly good. Then from 

Simple DAO bug, checks-effects solution works best whileas 

our method has moderalty higher cost. From cross-function 

bug we notice that again nuclear option does better than others 

and our solution is just slighlty better than others. But 

noticeable effect of our solution is on delegated and create-

based though there are no references from appropriate 

comparison we get to know that our method does an abyssmal 

job. 

 

VII. CONCLUSION AND FUTURE RESEARCH 

 With the recent announcement of metaverse by facebook, 

blockchain technologies have seen an exponential boom in 

marketplace. Though this has come with it‟s own set of 

challenges. Recent examples of hacks on DAO and DeFi has 

shown us that the systems are not as secure as they seem to be. 

We have thus focused on re-entrancy bug in smart contracts 

and tried mitigating it. We have explored more sub-types of 

re-entrancies and have carried out attack on them. But our 

proposed solution has made the system completely resilient to 

such sub-attacks. Though my solution was found wanting in 

gas efficiency. 

 The results of my research have prompted more potential 

future studies in enhancing the issue of gas cost efficiency. As 

the gas costs for my proposed solution is just moderately 

better, hence we need to strive for better results still and an 

end-user should not face the issue of extra gas fees as he is 

already paying for our services. Therefore, the industry and 

academia need to co-operate and invest in future research to 

help with these issues. 

ACKNOWLEDGMENT 

 All authors listed have made a substantial, direct, and 

intellectual contribution to the work and have approved it for 

publication. 

REFERENCES 

[1] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen and B. Roscoe, 

"ReGuard: Finding Reentrancy Bugs in Smart Contracts," 2018 
IEEE/ACM 40th International Conference on Software 

Engineering: Companion (ICSE-Companion), 2018, pp. 65-68. 

[2] Y. Chinen, N. Yanai, J. P. Cruz and S. Okamura, "RA: Hunting for 
Re-Entrancy Attacks in Ethereum Smart Contracts via Static 

Analysis," 2020 IEEE International Conference on Blockchain 

(Blockchain), 2020, pp. 327-336, doi: 
10.1109/Blockchain50366.2020.00048. 

[3] Alkhalifah A, Ng A, Watters PA and Kayes ASM (2021) A 

Mechanism to Detect and Prevent Ethereum Blockchain Smart 
Contract Reentrancy Attacks. Front. Comput. Sci. 3:598780. doi: 

10.3389/fcomp.2021.598780. 

[4] N. Fatima Samreen and M. H. Alalfi, "Reentrancy Vulnerability 
Identification in Ethereum Smart Contracts," 2020 IEEE 

International Workshop on Blockchain Oriented Software 
Engineering (IWBOSE), 2020, pp. 22-29, doi: 

10.1109/IWBOSE50093.2020.9050260. 

[5] P. Qian, Z. Liu, Q. He, R. Zimmermann and X. Wang, "Towards 

Automated Reentrancy Detection for Smart Contracts Based on 

Sequential Models," in IEEE Access, vol. 8, pp. 19685-19695, 

2020, doi: 10.1109/ACCESS.2020.2969429. 
[6] B. Jiang, Y. Liu and W. K. Chan, "ContractFuzzer: Fuzzing Smart 

Contracts for Vulnerability Detection," 2018 33rd IEEE/ACM 

International Conference on Automated Software Engineering 
(ASE), 2018, pp. 259-269, doi: 10.1145/3238147.3238177. 

[7] Sereum: Protecting Existing Smart Contracts Against Re-Entrancy 

Attacks Rodler, M., Li, W., Karame, G. O., & Davi, L. (2018). 
Sereum: Protecting existing smart contracts against reentrancy 

attacks. arXiv preprint arXiv:1812.05934. 

[8] V. C. Bui, S. Wen, J. Yu, X. Xia, M. S. Haghighweand Y. Xiang, 
"Evaluating Upgradable Smart Contract," 2021 IEEE International 

Conference on Blockchain (Blockchain), 2021, pp. 252-256, doi: 

10.1109/Blockchain53845.2021.00041. 



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 

Volume XI, Issue V, May 2022|ISSN 2278-2540 

www.rsisinternational.org Page 37 
 

[9] Zhang, P., Xiao, F., & Luo, X. (2019). Soliditycheck: Quickly 

detecting smart contract problems through regular 

expressions. arXiv preprint arXiv:1911.09425. 
[10] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. 

Marchenko and Y. Alexandrov, "SmartCheck: Static Analysis of 

Ethereum Smart Contracts," 2018 IEEE/ACM 1st International 
Workshop on Emerging Trends in Software Engineering for 

Blockchain (WETSEB), 2018, pp. 9-16. 

[11] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A 
Survey of Attacks on Ethereum Smart Contracts (SoK). In 

International Conference on Principles of Security and Trust. 

Springer, 164–186. 
[12] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric 

Fournet, Anitha Gol�lamudi, Georges Gonthier, Nadim Kobeissi, 

A Rastogi, T Sibut-Pinote, N Swamy, and S Zanella-Beguelin. 
2016. Formal verification of smart contracts. In Pro�ceedings of 

the 2016 ACM Workshop on Programming Languages and 

Analysis for Security-PLAS‟16. 91–96. 

[13] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. 

Guth, B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “Kevm: 
A complete formal semantics of the ethereum virtual machine,” in 

Proc. of CSF 2018. IEEE, 2018, pp. 204–217. 

[14] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, 
and M. Vechev, “Securify: Practical security analysis of smart 

contracts,” in Proc. of CCS 2018. ACM, 2018, pp. 67–82. 

[15] Dika, A., and Nowostawski, M. (2018). “Security vulnerabilities in 
Ethereum smart contracts,”in The institute of electrical and 

electronics engineers, Inc.(IEEE) conference proceedings, Halifax, 

NS, July 30–August 3, 2018 (IEEE), 955–962. 
[16] Hung, C., Chen, K., and Liao, C. (2019).“Modularizing cross-

cutting concerns with aspect-oriented extensions for solidity,” in 

The institute of electrical and electronics engineers, Inc.(IEEE) 
conference proceedings, Newark, CA, April 4–9, 2019 (IEEE), 

176–181.     


