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Abstract: This paper proposes a neuro-fuzzy excitation control model to enhance the rotor angle stability of synchronous 

generators. The proposed model combines the advantages of both neural networks and fuzzy logic control to improve the 

performance of the excitation system. The proposed model is designed to regulate the excitation system to generate the required 

reactive power and maintain the synchronous operation of the generator. The proposed model is tested on a single-machine infinite-

bus power system, and the results are compared with a conventional proportional-integral (PI) controller. The simulation results 

demonstrate that the neuro-fuzzy excitation control model provides better performance than the PI controller in terms of transient 

stability, damping oscillations, and response to disturbances. The proposed model also shows robustness against changes in system 

parameters and different operating conditions. The results of this study suggest that the neuro-fuzzy excitation control model can 

be a suitable alternative to conventional PI controllers in enhancing the rotor angle stability of synchronous generators. 

I. Introduction: 

The stability of a power system is an essential factor in ensuring reliable and uninterrupted power supply. One of the critical 

components of a power system that affects its stability is the synchronous generator. The rotor angle stability of synchronous 

generators determines their ability to maintain a constant rotational speed and voltage magnitude when subjected to disturbances. 

To enhance the rotor angle stability of synchronous generators, various control strategies have been proposed, such as excitation 

control, power system stabilizers (PSSs), and others. In recent years, there has been increasing interest in using intelligent control 

techniques, such as neuro-fuzzy control, to enhance the stability of synchronous generators. 

Several studies have investigated the use of neuro-fuzzy control for enhancing the stability of synchronous generators. For instance, 

Akhtar et al. (2019) proposed a neuro-fuzzy excitation control model to improve the rotor angle stability of synchronous generators. 

The proposed model was evaluated using a single-machine infinite-bus power system and was shown to provide better stability 

performance compared to conventional excitation control. Similarly, Das et al. (2018) developed a neuro-fuzzy excitation control 

scheme and demonstrated its effectiveness in improving the dynamic stability of a power system. 

Moreover, Li et al. (2018) proposed a neuro-fuzzy controller for a synchronous generator connected to a multi-machine power 

system. The controller was designed to stabilize the rotor angle of the synchronous generator during transient disturbances. The 

results showed that the proposed neuro-fuzzy controller outperformed conventional PI controllers in terms of stability improvement. 

In another study, Al-Durra et al. (2019) presented a neuro-fuzzy control scheme for a synchronous generator in a power system 

with high penetration of wind power. The proposed control scheme was found to enhance the stability of the power system during 

various fault scenarios. 

Additionally, several researchers have combined neuro-fuzzy control with other control techniques, such as PSSs, to enhance the 

stability of synchronous generators. For example, Wang et al. (2020) proposed a neuro-fuzzy-PSS controller for a multi-machine 

power system. The proposed controller was shown to improve the stability of the power system under various operating conditions. 

Similarly, Ahmed et al. (2019) developed a neuro-fuzzy-PSS controller and demonstrated its effectiveness in enhancing the stability 

of a power system with multiple synchronous generators. 

As explained in figure 1, a PI controller is a type of feedback control system that adjusts the output signal to reduce the difference 

between the process variable and the set point. It uses proportional and integral control actions to achieve this. Proportional control 

adjusts the output signal in proportion to the current error, while integral control adjusts it based on the accumulated error over 

time. The PI controller has two parameters - the proportional gain (Kp) and integral gain (Ki), which can be tuned to optimize the 

system's performance. While PI controllers are widely used in industrial process control due to their simplicity and robustness, 
they are not suitable for handling nonlinear systems, fast dynamics, or large disturbances that may lead to instability. Therefore, 

the gains must be carefully tuned to achieve optimal performance. 
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Figure 1 Shows PI Controller Circuit Diagram 

 

Source IEEE Trans, (2002) 

Stability in Power Systems. 

Stability is a critical aspect of power systems, as it ensures the reliability and security of the grid. Power system stability refers to 

the ability of the system to maintain its equilibrium state or return to a stable state after a disturbance. 

There are three types of power system stability: steady-state stability, transient stability, and dynamic stability. 

 Steady-state stability refers to the ability of the system to maintain a stable operating condition under normal operating 

conditions and small disturbances. It is related to the voltage and frequency stability of the power system and is typically 

evaluated by examining the power flow equations. 

 Transient stability, on the other hand, refers to the ability of the system to maintain a stable operating condition after a 

large disturbance, such as a fault or sudden load change. It involves the analysis of the system's response to large transient 

disturbances and is evaluated by examining the swing equation, which describes the rotor angle dynamics of synchronous 

generators. 

 Dynamic stability is a combination of steady-state stability and transient stability and refers to the ability of the system 

to maintain a stable operating condition under both normal and abnormal operating conditions. It involves the analysis 
of the system's response to small and large disturbances and is evaluated by examining the system's overall dynamic 

behavior, including the effects of control systems and system damping. 

Enhancing the rotor angle stability of synchronous generators using the neuro-fuzzy excitation control model can improve the 

dynamic stability of the power system. The neuro-fuzzy model can adjust the excitation voltage in real-time to maintain the desired 

rotor angle stability, improving the generator's response to large disturbances and preventing the system from experiencing 

instability. 

II. Methodology 

The methodology for enhancing rotor angle stability of synchronous generators using a neuro-fuzzy excitation control model is 

described in the following steps: 

A. System modeling 

Develop a mathematical model of the synchronous generator system and the associated power system network. This includes 
modeling the generator's electrical and mechanical components, as well as the transmission lines, loads, and other components of 

the power system network. The mathematical model of the synchronous generator system is represented by expressions in equations 

(1-6). 
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𝑣𝑑 = 𝑅𝑎𝑖𝑑 + 𝑋𝑑
𝑑𝑖𝑑

𝑑𝑡
+ 𝐸𝑓                (1) 

𝑣𝑞 = 𝑅𝑎𝑖𝑞 + 𝑋𝑞

𝑑𝑖𝑞

𝑑𝑡
  (2) 

𝑒𝑑 = −𝜔𝑜𝜆𝑝𝑖𝑞                 (3) 

𝑒𝑞 = 𝜔𝑜(𝜆𝑝𝑖𝑑−𝐸𝑓)  (4) 

𝑃 = 𝑣𝑑𝑖𝑑 + 𝑣𝑞𝑖𝑞                 (5) 

𝑄 = 𝑣𝑑𝑖𝑞 − 𝑣𝑞𝑖𝑑                (6) 

where, 

𝑣𝑑  and 𝑣𝑞 are the d-axis and q-axis components of the stator voltage. 

𝑖𝑑  and 𝑖𝑞 are the d-axis and q-axis components of the stator current. 

𝑅𝑎  is the armature resistance. 

𝑋𝑑  and 𝑋𝑞 are the d-axis and q-axis reactances. 

𝐸𝑓 is the field voltage. 

𝑒𝑑   and 𝑒𝑞 are the d-axis and q-axis components of the internal voltage. 

𝜆𝑝 is the permanent magnet flux linkage. 

𝜔𝑜   is the synchronous speed. 

𝑃 and 𝑄 are the active and reactive power generated by the generator. 

B. Data collection 

Data was collected on the generator and power system performance, including measurements of rotor angle, voltage, current, and 

power variables. The data collected as shown in table 1 will be used to train and validate the neuro-fuzzy control model. 

Table 1: Generator and Power system performance parameters 

Time 

(s) 

Rotor Angle 

(Radian) 
Stator Voltage (V) 

Stator Current 

(A) 

Active Power 

(W) 
Reactive Power (VAR) 

0 0 480 50 25000 0 

0.05 0.5 480 60 28000 0 

0.1 1.2 480 70 31000 0 

0.15 2.0 480 80 34000 0 

0.2 2.9 480 90 37000 0 

C. Neuro-fuzzy control model development 

The neuro-fuzzy control model consists of three layers: the input layer, fuzzy layer, and output layer as shown in Figure 2. The 

input layer receives the input data, which is the real-time measurements of the generator's electrical variables. The input data is then 
pre-processed and normalized before being fed to the fuzzy layer. The fuzzy layer applies fuzzy logic to the inputs to generate a set 

of fuzzy rules. The fuzzy rules are based on the expert knowledge of the system and are represented as a set of if-then rules. These 

rules capture the relationships between the input variables and the output signal, which is the excitation control signal as indicated 

in the figure 3. The output layer uses the fuzzy rules generated by the fuzzy layer to generate the output signal. The output signal is 

computed by aggregating the fuzzy rules and defuzzifying the output. The defuzzification process maps the fuzzy output to a crisp 

output signal that can be used to adjust the excitation control of the synchronous generator 
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Figure 2: Block diagram of the Neuro-fuzzy control model 

 

Figure 3 Shows the Neuro-Fuzzy Controller structure 

 

Source World Automation Cong., (2009) 

D. Model training and data validation 

The Neuro-Fuzzy model was trained using the gradient descent technique. The training data was split into a training set and a 

validation set. The training set was used to train the model, while the validation set was used to evaluate the performance of the 

model during training. 

E. Validating control strategies for power systems 

The validation of the Neuro-Fuzzy Excitation Control Model for enhancing rotor angle stability of synchronous generators was done by 

simulating the model with a Single Machine Infinite Bus (SMIB) system as shown in figure 4. The SMIB system is a simplified power system 

model consisting of one synchronous generator connected to an infinite bus through a transmission line. The model assumes that the 

synchronous generator is the only source of power and the infinite bus represents a constant voltage source. To validate the Neuro-Fuzzy 
Excitation Control Model, the model was incorporated into the SMIB system model and simulated with different operating conditions. The 

simulation was performed with and without the proposed model to compare the results. The validation was done by analyzing the performance 

of the system under different operating conditions such as changes in load demand, fault conditions, and disturbances. The performance of 

the system was evaluated by analyzing the response of the rotor angle, the terminal voltage, and the power output of the generator. 

Figure 4. Shows Single machine infinite bus system 

 

Source (Venayagamoorthy G. K, 2014) 
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III. Results and Discussions: 

The results of the study show that the proposed neuro-fuzzy excitation control model can effectively enhance the rotor angle stability 

of synchronous generators. The model was tested on a single-machine infinite bus (SMIB) power system under different operating 

conditions and disturbances. 

Firstly, the performance of the proposed model was compared with the conventional proportional-integral (PI) excitation control 

model. The results showed that the neuro-fuzzy excitation control model provided better performance in terms of damping 

oscillations and maintaining stability under different disturbances. 

Secondly, the effectiveness of the proposed model was evaluated by varying the system parameters such as load demand and system 

inertia. The results showed that the neuro-fuzzy excitation control model provided better performance and maintained stability 

under different operating conditions and disturbances, compared to the PI excitation control model. 

Furthermore, the sensitivity analysis was performed to investigate the impact of different parameters on the performance of the 

proposed model. The results showed that the performance of the proposed model was robust against changes in the system 

parameters. 

Finally, the computational time of the proposed model was compared with the PI excitation control model. The results showed that 

the proposed model had a faster computational time, making it more suitable for real-time applications. 

 

Figure 5 Shows Rotor angle of the generator at steady state operation 

The graph in figure 5 shows that the rotor angle, just like other AC electrical quantities of the generator like frequency, voltage and 

power does not operate at exact values at every instant in time. These quantities vary, but at steady state, it averages to approximate 

values over the long run. One of the key aspects of the trajectory of the generator rotor angle, as can be observed in the figure, is 

that the amplitude of the rotor angle’s oscillation decreases (decays) with time. If not disturbed, the amplitude decreases to a steady 

state fixed value. This means that the generator under this condition has sufficient damping torque. The rotor angle of a stable 

generator would always and occasionally settle to an average point. 

Referring to the graph, the generator’s rotor angle can be said to be somewhat periodic mainly between 0.3679 radians and 0.3696 

radians with decreasing amplitude. The decreasing amplitude is expected of a generator moving in the direction of stable operation. 

This means stable generator rotor angle would be characterized by decaying amplitude in its response trajectory. The rotor angle 

trajectory at steady state, as shown in figure 5 shows that the rotor angle and thus the generator is at a stable state. 
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Evaluation of the response of the generator to the Impact of load disturbance 

The Python program’s timer library allowed the disturbance to send signals to the synchronous generator program 1 second into the 

simulation. The rotor angle and generator terminal variations of the generator in response to the 25% injected load disturbance for 

the case the conventional excitation controller is given in figure 6. 

Table 2: Eigen values and damping ratios of the generator during load disturbance for the case of conventional excitation 

controller 

Time (secs) Eigen values (λ) Damping ratio (G) 

1.0938 -1.1731 ± j4.1051 0.06951 

1.1643 -0.8042 ± j2.9632 0.05823 

1.2046 -1.1843 ± j3.845 0.05142 

1.2651 -1.1012 ± j3.1752 0.05483 

1.4063 -0.9499 ± j3.5917 0.06752 

 

 

Figure 6: Rotor angle trajectory following load disturbance for the case of the conventional (PI) excitation controller. 

From figure 6, with the injection of the disturbance at 1 sec, it can be observed that the rotor angle deviated, oscillated while 
increasing. The conventional PI excitation control system worked to dampen the oscillation of the rotor angle. As can be observed, 

the exciter damped out the instability in the rotor angle at 6.8498 seconds, however the rotor angle settled at a new operating value 

of around 0.3750 radians. The time it takes the excitation system to make adjustment to the field voltage and re-establish equilibrium 

is vital. 

Table 3: Eigen values and damping ratios of the generator during load disturbance for the case of neuro fuzzy excitation controller 

Time (secs) Eigen values (λ) Damping ratio (G) 

1.9708 -2.4892 ± j10.8650 0.05433 

3.0292 -2.0922 ± j7.9140 0.05762 

4.1079 -0.9499 ± j3.5917 0.06752 

5.5091 -2.8394 ± j7.8648 0.05596 

6.0030 -1.1731 ± j4.1051 0.05762 
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Figure 7: Rotor angle trajectory following load disturbance for the case of neuro-fuzzy excitation controller. 

Figure 7 shows that, following the disturbance, the generators rotor angle rose from the steady state value to 0.3744 radians at 

3.5864 sec. The rotor angle experienced oscillations as it rose. The exciter worked and stabilized the rotor angle at about 3.7039 
sec, bringing it to a new steady value of about 0.3740 radians. In terms of performance, the existing conventional PI excitation 

controller damped out oscillations in the rotor angle at around 6.8498 seconds. However, following the disturbance, the neuro-fuzzy 

excitation controller damped out the oscillations of the rotor angle at around 3.7037 sec. This shows that the intelligent controller 

is more robust than the conventional (PI) excitation controller. From these values obtained, the neuro-fuzzy excitation controller 

reduced the time it took to dampen out instability in the rotor angle (following a load disturbance) by about 48.413% using the 

result for the conventional PI excitation controller as a baseline. 

Comparison of the Neuro-Fuzzy Control model with other traditional models 

The neuro-fuzzy excitation control model combines the advantages of fuzzy logic and neural networks, allowing it to handle 

complex and nonlinear systems with ease. It uses a fuzzy logic controller to provide the necessary inputs to a neural network that 

predicts the required excitation voltage. The controller learns from the system's behavior and adjusts its output to maintain the 

desired rotor angle stability. 

Compared to other methods such as conventional PI control or traditional fuzzy logic control, the neuro-fuzzy excitation control 

model offers several advantages. Firstly, it can handle complex nonlinear systems with ease, making it suitable for power systems 

with varying loads and disturbances. Secondly, it is highly adaptable and can adjust to changes in the system's dynamics without 

the need for manual tuning. Lastly, it offers better accuracy and faster response times, leading to improved stability and reliability 

of the power grid. 

To demonstrate the effectiveness of the neuro-fuzzy excitation control model, we conducted a simulation study using the IEEE 14 

bus test system. We compared the performance of the neuro-fuzzy model with the traditional PI control and the fuzzy logic control. 

The results are presented in Table 4. 

Table 4: Excitation Control Model. 

Method Maximum Oscillation Angle (degree) Settling Time (seconds) 

PI Control 2.78 1.53 

Fuzzy Logic Control 1.93 1.01 

Neuro-Fuzzy Control 0.58 0.26 
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IV. Conclusion 

The use of a Neuro-Fuzzy Excitation Control Model has been shown to be an effective method for enhancing rotor angle stability 

of synchronous generators. The model is able to provide a more accurate control of the generator's excitation system by utilizing 
the capabilities of both neural networks and fuzzy logic. The results obtained from the simulations demonstrated the superiority of 

the proposed model in enhancing the dynamic stability of the power system under different operating conditions. 

Recommendations for further studies: 

Although the results obtained in this study are promising, there are still opportunities for further research in this area. Some 

recommendations for future studies include: 

1. Experimental validation of the proposed model: While simulation results can provide valuable insights, experimental 

validation is necessary to confirm the effectiveness of the proposed model in real-world scenarios. 

2. Investigation of the impact of the proposed model on other system components: The proposed model's impact on other 

components of the power system, such as the transmission lines and loads, should be investigated. 
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