INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING, MANAGEMENT \& APPLIED SCIENCE (IJLTEMAS)

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue II, February 2024

On the Exponential Diophantine Equation $17^{x}-11^{y}=\mathbf{z}^{2}$

TheeradachKaewong,Wariam Chuayjan, and Sutthiwat Thongnak*
Department of Mathematics and Statistics, Thaksin University,Phatthalung93210, Thailand. Corresponding Author*

DOI:https://doi.org/10.51583/IJLTEMAS.2024.130209
Received: 02 December 2023; Revised: 10 December 2023; Accepted: 15 December 2023; Published: 06 March 2024

Abstract

In this work, we study all solutions to the exponential Diophantine equation $17^{x}-11^{y}=\mathrm{z}^{2}$ where x, y and z are nonnegative integers. The result indicates that there are two solutions, which are $(x, y, z) \in\{(0,0,0),(1,0,4)\}$.

Keywords: divisibility; exponential Diophantine equation; modular arithmetic method; Catalan's conjecture; Order of an integer modulo n

Mathematics Subject Classification: 11D61, 11D72, 11 D 45.

I.Introduction

Letaand b be positive integers and consider the exponential Diophantine equation $a^{x}-b^{y}=z^{2}$, where x, yandzare unknown variables. This equation has been determined as the solution by many mathematicians.In 2018, the exponential Diophantine $4^{x}-$ $p^{y}=z^{2}$, for $p=2^{q}-1$ where q is a prime, was investigated by J.F.T. Rabago[5]. He showed that the set of all solutions is $(x, y, z) \in\left\{\left(q-1,2^{q-1}-1\right)\right\} \cup\{(0,0,0)\}$. In 2019 , S. Thongnak et al. [9] determined all solutions to the exponential Diophantine equation $2^{x}-3^{y}=z^{2}$. They proved that the equation has only three solutions. In the same year, Burshtein[1] conjectured that the equation $6^{x}-11^{y}=z^{2}$, where x, yandzare positive integers, has only one solution. In 2020, Buosi et al. [3] studied the equation $p^{x}-2^{y}=z^{2}$, where $p=k^{2}+2$ is a prime number and kisa positive integers. He proved that the solutions (x, y, z) are $(0,0,0)$ and $(1,1, k)$ for $k \geq 3$. Although many exponential Diophantine equations were solved, for example, [6-8, 10-13], several problems remain unsolved. In this paper, we determine all solutions to the exponential Diophantine equation $17^{x}-11^{y}=z^{2}$, where $\boldsymbol{x}, \boldsymbol{y}$ and zare non-negative integers.

II. Preliminaries

Theorem: 1(Catalan's conjecture [4]) Leta, b, x, andybe integers. The exponential Diophantine equation $a^{x}-b^{y}=z^{2}$ with $\min \{a, b, x, y\}>1$ hasthe unique solution $(a, b, x, y)=(3,2,2,3)$.

Definition:2 [2]Let aand n are integers and $n>1$ with $\operatorname{gcd}(a, n)=1$. The order of a modulo n is the smallest positive integer $k s u c h$ that $a^{k} \equiv 1(\bmod n)$ and is denoted by $\operatorname{ord}_{n} a$.

Theorem: 3[2] Let the integer ahave order k modulo $n\left(k=\operatorname{ord}_{n} a\right)$.Then $a^{k} \equiv 1(\bmod n)$ if and only if $\boldsymbol{k} \mid \boldsymbol{n}$.
Lemma: 4 If x is a positive odd integer, then $6^{x} \equiv 2,6,7,8,10(\bmod 11)$.
Proof:Let x be a positive odd integer. By division algorithm, there exist $q, r \in \mathbb{Z}$ such that $x=10 q+r$, where $r=1,3,5,7,9$. Then, we can write

$$
\begin{gathered}
6^{x} \equiv\left(6^{10}\right)^{q} 6^{r}(\bmod 11) \\
\equiv 6^{r}(\bmod 11) \\
\equiv 6,6^{3}, 6^{5}, 6^{7}, 6^{9}(\bmod 11)
\end{gathered}
$$

$\equiv 6,7,10,8,2(\bmod 11)$.
Hence, $6^{x} \equiv 2,6,7,8,10(\bmod 11)$.
Lemma: 5 If $x \in \mathbb{Z}$, then $x^{2} \equiv 0,1,3,4,5,9(\bmod 11)$. Proof: Suppose $x \in \mathbb{Z}$. There exist $q, r \in \mathbb{Z}$ such that $x=11 q+r$, where $0 \leq r<11$. Hence

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT \& APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue II, February 2024

$$
\begin{gathered}
x^{2} \equiv 0^{2}, 1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}, 7^{2}, 8^{2}, 9^{2}, 10^{2}(\bmod 11) \\
\equiv 0,1,3,4,5,9(\bmod 11)
\end{gathered}
$$

Hence, $x^{2} \equiv 0,1,3,4,5,9(\bmod 11)$.

III. Main Result

Main Theorem: The exponential Diophantine equation $\mathbf{1 7}^{\boldsymbol{x}}-\mathbf{1 1}^{\boldsymbol{y}}=\mathbf{z}^{\mathbf{2}}$, where $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} are non-negative integers, has two solutions (x, y, z), including $(\mathbf{0}, \mathbf{0}, \mathbf{0})$ and ($\mathbf{1}, \mathbf{0}, \mathbf{4})$.

Proof: Let x, y, and $z \in \mathbb{Z}^{+} \cup\{0\}$ such that
$17^{x}-11^{y}=z^{2}$.
We separate into four cases as follows.
Case 1: $\boldsymbol{x}=\boldsymbol{y}=\mathbf{0}$. We obtain $\boldsymbol{z}=\mathbf{0}$ from equation (1), so a solution to the equation is $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=(\mathbf{0}, \mathbf{0}, \mathbf{0})$.
Case 2: $\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{y}>0$. Equation (1) becomes $\boldsymbol{z}^{\mathbf{2}}=\mathbf{1}-\mathbf{1 1}^{\boldsymbol{y}}<0$, which is impossible.
Case 3: $\boldsymbol{x}>0$ and $\boldsymbol{y}=\mathbf{0}$. Equation (1) becomes
$17^{x}-z^{2}=1$.
If $\boldsymbol{x}=\mathbf{1}$, then from equation (2), we obtain $\boldsymbol{z}^{2}=\mathbf{1 6 y i e l d i n g} \boldsymbol{z}=4$. Hence, another solution to equation (1) is $(x, y, z)=(1,0,4)$.
If $\boldsymbol{x}>1$, then equation (2) implies that $\mathbf{z}>1$. By Theorem 1, there is no solution.
Case 4: $x>0$ and $y>0$. We divide into two subcases as follows.
Subcase 4. 1: x is a positive odd integer. By Lemma4, we have $6^{x} \equiv 2,6,7,8,10(\bmod 11)$. Equation (1$)$ yields $z^{2} \equiv$ $6^{x}(\bmod 11)$ implying $z^{2} \equiv 2,6,7,8,10(\bmod 11)$. This contradiction to Lemma 5.

Subcase 4.2: x is a positive even integer. Let $x=2 k, \exists k \in \mathbb{Z}^{+}$. Then, we write as $11^{y}=17^{2 k}-z^{2}$ or $\mathbf{1 1}^{\boldsymbol{y}}=\left(\mathbf{1 7}^{\boldsymbol{k}}-\mathbf{z}\right)\left(\mathbf{1 7}^{\boldsymbol{k}}+\right.$ z).Then, there exists $\alpha \in\{0,1,2, \ldots, y\}$ satisfying $17^{k}-z=11^{\alpha}$ and17 ${ }^{k}+z=11^{y-\alpha}$, where $\alpha<y-\alpha$. Thus, we obtain
$2 \cdot 17^{k}=11^{\alpha}\left(1+11^{y-2 \alpha}\right)$.
Since $\mathbf{1 1}\left\{\mathbf{2} \cdot \mathbf{1 7}^{\boldsymbol{k}}\right.$, by equation (3), we conclude that $\alpha=0$. Then, equation (3) becomes
$2 \cdot 17^{k}=1+11^{y}$.
It yields that $2 \cdot 2^{k} \equiv 2(\bmod 5)$ or $2^{k} \equiv 1(\bmod 5)$. From $\operatorname{ord}_{5} 2=4$ and Theorem 3 , we get $4 \mid k$ and let $k=4 l, \exists l \in \mathbb{Z}^{+}$. Then, equation (4) yields $2 \cdot 6^{4 l} \equiv 1(\bmod 11) \cdot S i n c e 6^{9} \equiv 2(\bmod 11), \operatorname{ord}_{11} 6=10$ and Theorem 3 , we get $10 \mid 4 l+9$ yielding that there exist $m \in \mathbb{Z}$, such that $4 l+9=10 m$ or $2(5 m-2 l)=9$. It is a contradiction. From all cases, the solutions (x, y, z) to the exponential Diophantine equation $17^{x}-11^{y}=z^{2}$ are $(\mathbf{0}, \mathbf{0}, \mathbf{0})$ and $(\mathbf{1}, \mathbf{0}, 4)$.

IV. Conclusion

We have proved all solutions to the exponential Diophantine equation $17^{x}-11^{y}=z^{2}$, where $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} are non-negative integers. The two Lemmas have been given and applied to obtain all solutions. The result indicates that the set of the solution is $(x, y, z) \in\{(0,0,0),(1,0,4)\}$.

Acknowledgment

We would like to thank reviewers for carefully reading our manuscript and the useful comments.

References

1. Burshtein, N., (2019) A short note on solutions of the Diophantine equations $6^{x}+11^{y}=z^{2}$ and $6^{x}-11^{y}=z^{2}$ in positive integers x, y, z Annals of Pure and Applied Mathematics, 19(2), $55-56$.
2. Burton, D. M., (2011) Elementary Number Theory, The McGraw-Hill and in positive integers Companies.
3. Buosi, M., Lemos, A., Porto, A. L. P. and Santiago, D. F. G., (2020) On the Exponential Diophantine Equation $p^{x}-2^{y}=$ z^{2} with $p=k^{2}+2$, a Prime Number, Southeast-Asian Journal of Science,8(2), 103-109. INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT \& APPLIED SCIENCE (IJLTEMAS)

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue II, February 2024
4. Mihailescu, P., (2004) Primary Cyclotomic Units and a Proof of Catalan's Conjecture, Journal fur die Reineund Angewandte
5. Mathematik, 572, 167-195.
6. Rabago, J. F. T., (2018) On the Diophantine equation $4^{x}-p^{y}=z^{2}$ where p is a prime, Thai Journal of Mathematics, 16(3), 643-650.
7. Tadee, S., (2022) On the Diophantine equation $(p+6)^{x}-p^{y}=z^{2}$ where p is a Prime number with $p \equiv l(\bmod 28)$, Journal of Mathematics and Informatics, 23, 51-54.
8. Tadee, S., (2022) On the Diophantine equation $3^{x}+p^{y}=z^{2}$ wherep is a prime, Journal of Science and Technology Thonburi University, 7(1), 1-6.
9. Tadee, S., (2023) A short note on two Diophantine $9^{x}+3^{y}=z^{2}$ and $13^{x}-7^{y}=z^{2}$, Journal of Mathematics and Informatics, 24, 23-25.
10. Thongnak, S., Chuayjan, W. and Kaewong T., (2019) On the Exponential Diophantine equation $2^{x}+3^{y}=z^{2}$, SoutheastAsian Journal of Sciences, 7(1), 1-4.
11. Thongnak, S., Chuayjan, W. and Kaewong, T., (2021) The Solution of The Exponential Diophantine equation $7^{x}+5^{y}=z^{2}$, Mathematical Journal, 66(703), 62-67.
12. Thongnak, S., Chuayjan, W. and Kaewong, T., (2022) On the Diophantine equation $7^{x}-2^{y}=z^{2}$ where x, y, and z are nonnegative integers, Annals of Pure and Applied Mathematics, 25(2), 63-66.
13. Thongnak, S., Chuayjan, W. and Kaewong, T.,(2023) On the Diophantine equation $15^{x}-13^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 27(1), 23-26.
14. Thongnak, S., Kaewong, T. and Chuayjan, W., (2023) On the Diophantine equation $55^{x}-53^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 27(1), 27-30.

