On the Exponential Diophantine Equation $305^{x}+503^{y}=z^{\mathbf{2}}$

Theeradach Kaewong ${ }^{1}$, Sutthiwat Thongnak ${ }^{2}$, and Wariam Chuayjan ${ }^{3 *}$
${ }^{1,2,3}$ Department of Mathematics and Statistics, Faculty of Science and Digital Innovation, Thaksin University, Phatthalung 93210, Thailand.

*Corresponding Author
DOI: https://doi.org/10.51583/IJLTEMAS.2024.130211
Received: 07 February 2024; Accepted: 10 February 2024; Published: 08 March 2024

Abstract

In this paper, we compute and prove the solution to the exponential Diophantine equation $305^{x}+503^{y}=z^{2}$ where x, y and zare non-negative integers. The result indicate that the equation has no solution.

Keywords: divisibility; exponential Diophantine equation; modular arithmetic method; Quadratic residue; Prime number
Mathematics Subject Classification: 11D61, 11D72, 11D45.

I.Introduction

An exponential Diophantine equation is a classical problem in Mathematics. Because one equation contains more than one unknown variable, the theory of number must be applied to find a solution. From 2006 to 2022, mathematicians investigated several exponential Diophantine equations of type $a^{x}+b^{y}=z^{2}$, where x, y and z are unknown variables and a, b are positive integers. The examples of the studied equation can be read in $[1,4,6-9,11]$. Recently, many researches on the exponential Diophantine equation have been published. For instance, N. Viriyapong and C. Viriyapong [12] studied the exponential Diophantine equation $255^{x}+323^{y}=z^{2}$ in 2023. They proved that $(x, y, z) \in\{(1,0,16),(0,1,18)\}$ are two solutions to the equation. After that, S. Aggrawal et al. [2] proved that the exponential Diophantine equation $145^{x}+85^{y}=z^{2}$ has a unique nonnegative integer solution which is $(x, y, z)=(1,0,12)$. Next, another similar equation, $143^{x}+485^{y}=z^{2}$, was studied[3]. In the same year, S. Tadee and N . Thaneepoon[10] studied the exponential Diophantine equation $6^{x}+p^{y}=z^{2}$.They proved that if $p \leq 7$ and x is even, then the solutions to the equation are $(p, x, y, z) \in\{(2,0,3,3),(3,0,1,2),(2,2,6,10),(3,4,6,45)\}$. In this paper, we use the knowledge in number theory to find the solution to the Diophantine equation $305^{x}+503^{y}=z^{2}$ where x, y and z are non-negative integers.

II. Preliminaries

Theorem1:[5] The number 2 is a quadratic residue of primes of the form $p=8 k+1 \mathrm{and} p=8 k+7$. The number 2 is not a quadratic residue of primes of the form $p=8 k+3$ and $p=8 k+5$.

Lemma2: If $z \in \mathbb{Z}$, then $z^{2} \equiv 0,1,4(\bmod 5)$.
Proof: Let $z \in \mathbb{Z}$. We have $z \equiv 0,1,2,3,4(\bmod 5)$. It yields that $z^{2} \equiv 0,1,4,9,16(\bmod 5) \equiv 0,1,4(\bmod 5)$.
Lemma3: If y is an odd positive integer, then $3^{y} \equiv 2,3(\bmod 5)$.
Proof: Suppose y is an odd positive integer. There exist $q \in \mathbb{Z}^{+} \cup\{0\}$ such that $y=4 q+1$ or $4 q+3$.
If $y=4 q+1$, then we have $3^{y}=\left(3^{4}\right)^{q} 3 \equiv 3(\bmod 5)$.
If $y=4 q+3$, then we have $3^{y}=\left(3^{4}\right)^{q} 27$. Since $3^{4} \equiv 1(\bmod 5)$ and $27 \equiv 2(\bmod 5)$, we obtain $3^{y} \equiv 1^{q} \cdot 2(\bmod 5)$ or $3^{y} \equiv$ $2(\bmod 5)$. Therefore, we can conclude that $3^{y} \equiv 2,3(\bmod 5)$.

III. Main Result

Main Theorem: The exponential Diophantine equation $305^{x}+503^{y}=z^{2}$, where x, y and z are non-negative integers, has no solution.

Proof: Let x, y, and $z \in \mathbb{Z}^{+} \cup\{0\}$ such that
$305^{x}+503^{y}=z^{2}$.
We separated into four cases as follows.
Case 1: $x=y=0$. Equation (1)becomes $z^{2}=2$, which is impossible.
Case 2: $x=0$ and $y>0$. Equation (1) becomes $z^{2}=1+503^{y}$, which implies that $z^{2} \equiv 2(\bmod 251)$. This contradicts
Theorem1 because of $251 \equiv 3(\bmod 8)$.
Case 3: $x>0$ and $y=0$. Equation (1) becomes $z^{2}=305^{x}+1$, which results in $z^{2} \equiv 2(\bmod 4)$. This is impossible because of $z^{2} \equiv 0,1(\bmod 4)$.

Case 4: $x>0$ and $y>0$. To clarify, we consider y to be two sub cases as follows.
Sub case 4.1: y is a positive odd integer. By Lemma3, we have $3^{y} \equiv 2,3(\bmod 5)$, while equation (1) yields $z^{2} \equiv 3^{y}(\bmod 5)$.
Thus, we have $z^{2} \equiv 2,3(\bmod 5)$, which contradicts Lemma 2.
Subcase 4.2: y is a positive even integer. We have $3^{y} \equiv 1(\bmod 4)$.Equation (1) yields $z^{2} \equiv 1+3^{y}(\bmod 4)$ or $z^{2} \equiv 2(\bmod 4)$, which contradicts $z^{2} \equiv 0,1(\bmod 4)$.

IV. Conclusion

We studied solution to the exponential Diophantine equation $305^{x}+503^{y}=z^{2}$ where x, y and z are non-negative integers. We derive two Lemmas to prove that the equation has no solution.

Acknowledgment

We would like to thank reviewers for carefully reading our manuscript and the useful comments.

References

1. Acu, D., (2007) On a Diophantine Equation $2^{x}+5^{y}=z^{2}$, General Mathematics, 15(4), 145-148.
2. Aggarwal, S., Swarup, C., Gupta, D., and Kumar, S., (2023) Solution of the Diophantine Equation $143^{x}+85^{y}=z^{2}$, International Journal of Progressive Research in Science and Engineering, 4(22), 5-7.
3. Aggarwal, S., Kumar, S., Gupta, D., and Kumar, S., (2023) Solution of the Diophantine Equation $143^{x}+485^{y}=z^{2}$, International Research Journal of Modernization in Engineering Technology and Science, 5(2), 555 - 558.
4. Behera, S.P.and Panda, A.C., (2021) Nature of the Diophantine Equation $4^{x}+12^{y}=z^{2}$, International Journal of Innovative Research in Computer Science \& Technology (IJIRCST), 9(6), 11-12.
5. Burton, D. M., (2011) Elementary Number Theory, The McGraw-Hill and in positive integers Companies.
6. Kumar, S. and Aggarwal, S., (2021) On the Exponential Diophantine Equation $439^{p}+457^{q}=r^{2}$, Journal of Emerging Technologies and Innovation Research, 8(3), 2357-2361.
7. Sroysang, B., (2013) More on the Diophantine Equation $2^{x}+19^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 88(1), 157-160.

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
 MANAGEMENT \& APPLIED SCIENCE (IJLTEMAS)

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue II, February 2024
8. Sugandha, A., Tripena, A., Prabowo, A. and Sukono, F., (2018) Nonlinear Diophantine Equation $11^{x}+13^{y}=z^{2}$, IOP Conf. Series: Materials Science and Engineering, 332, 1-4.
9. Suvarnamani, A., (2011) On two Diophantine Equation $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$, Science and Technology RMUTT Journal, 1(1), 25-28.
10. Tadee, S., and Thaneepoon, N., (2023) On the Diophantine equation $6^{x}+p^{y}=z^{2}$ where p is Prime, International Journal of Mathematics and Computer Science, 18(4), 737-741.
11. Thongnak, S., Chuayjan, W. and Kaewong, T., (2022) On the Exponential Diophantine Equation $2^{x}+15^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 26(1), 1-5.
12. Viriyapong, N. and Viriyapong, C., (2023) On the Diophantine equation $255^{x}+323^{y}=z^{2}$, International Journal of Mathematics and Computer Science, 18(3), 521 - 523.

