
Volume I Issue X Dec 2012 IJLTEMAS ISSN 2278 – 2540

108 | P a g e w w w . i j l t e m a s . i n

Threat Modeling for Secure

Embedded Software
Dr. Gaurav Kumar Jain

Professor, Regional College For Education, Research and Technology

Email: gaurav.rinkujain.jain@gmail.com

Mr. Dipesh Bhardwaj

Developer, Regional College For Education, Research and Technology

Email : sft.er.dipesh3bhardwaj@gmail.com

Abstract— As embedded software becomes more

ubiquitous and connected – powering everything from

home appliances and cars to aircraft and mission-critical

systems – organizations must take additional steps to

ensure that the code produced is both secure and reliable.

Embedded software, however, presents a unique set of

challenges for application development and engineering

teams. To combat embedded software threats, teams are

turning to strategies such as threat modeling, static

analysis and penetration testing to secure their embedded

code.

Index Terms— embedded software, application

development, combat, threat modeling, penetration

testing.

1.0 Introduction

Software developers’ greatest challenges in producing

secure embedded code are rooted in the nature of the

devices that run the software:

 They are resource-constrainedand have less

“room” to compensate for CPU- or memory-

robbing attacks. As a result, they are easily

susceptible to denial of service attacks.

 Their performance can be slowed by

cryptography. To speed performance,

embedded developers do not include secure

networking protocols on embedded devices as

often as they do on their desktop counterparts.

 Their firmware can be changed.

Knowledgeable users can swap out existing

embedded firmware and replace it with an

operating system of their choice.

 They are only intermittently connected to a

network. Inconsistent network connections

reduce the likelihood that security patches

will be kept up-to-date, and increase the

chance that the device will access an unsecure

network.

 They are easy to steal due to their small

physical size. In theory, an attacker could

swap one embedded device for another and

load malicious information into a system.

This paper will examine threat modeling and explain

how it can be used in concert with secure development

best practices, including automated source code

analysis, peer code reviews, and penetration testing to

both identify and mitigate embedded software threats.

2.0 Threat Modeling – A Brief

Overview

Threat modeling is a security engineering activity that

documents the key assets found in an application or

system and purposely exposes risks to those assets in a

thorough and disciplined manner. The goal of a threat

model is to shine a light upon hidden security risks that
may not be obvious or anticipated by the design team.

This information can then be used to develop a risk

management strategy and provide a roadmap for future

security engineering activities.

By identifying an application’s potential

vulnerabilities, threat modeling helps development

teams to understand and prioritize the array of risks for

which the software is susceptible. With the results of a

threat model in hand, development teams can ensure

that they are concentrating their design, development
and testing techniques on the risks that matter most.

2.1 Benefits of Threat Modeling

Threat modeling is one of the most powerful security

engineering activities because it focuses on actual

threats, not simply on vulnerabilities. A threat is an

external event that can damage or compromise an asset

109 | P a g e w w w . i j l t e m a s . i n

or objective, whereas vulnerability is a weakness

within a system that makes an exploit possible.

Vulnerabilities can be repaired, but threats can live on

indefinitely or change over time. Threat modeling

facilitates a risk-based software development approach

by uncovering external risks and encouraging the use
of secure coding practices.

In particular, threat modeling helps development teams

to:

 Assess the probability, potential harm, and

priority of attacks

 Prioritize security efforts according to true

risk

 Shape an application design to meet security

objectives

 Identify where additional security resources

are required

 Weigh security decisions against other design

goals

 Improve the security of an application by

implementing effective countermeasures

 Understand attack vectors for penetration

testing

 Understand the conditions under which an

attack may be successful

By helping development teams to identify and

understand potential threats, threat modeling provides

the essential information needed to plan an embedded

software security strategy.

2.2 Caveat to Threat Modeling

It is important to note that threat modeling is not an

attack plan, a test plan, a formal proof of system

security, or a design review. Threat modeling informs

those plans and reviews by offering deep insight into

the methods attackers could use to manipulate

embedded software. Threat modeling is therefore a key

contributor to design review and test planning, but
should not be considered a substitute for those

activities.

3.0 Creating a Threat Model

Developing a threat model is a team effort, but works

best when the modeling exercise is led by a designer

with security expertise. The following activity

overview outlines an efficient and repeatable procedure

for modeling threats to embedded software.

Step 1: Identify Security Objectives

First, the team must clarify the desired level of

security. Is the goal to prevent any and all security

breaches? Are certain attacks permissible? Preventing

every possible attack may not be possible or cost-

effective, so it is important to develop realistic

objectives that balance security, cost and effort.

Step 2: Create a System Overview

Once its security objectives are clear, the development

team should examine its software application and

identify each asset of value. Assets of value are

components that an attacker would value and which

therefore need to be protected. Examples include:

 Data assets such as credit card numbers

 Technology assets such as intellectual
property or content under Digital Rights

Management “By helping development teams

to identify and understand potential threats,

threat modeling provides the essential

information needed to plan an embedded

software security strategy.”

 Soft assets such as business reputation and

customer trust. Certain attacks, such as

defacement, can have a minor impact on hard

assets but can dramatically reduce customer
confidence in an organization’s ability to

develop a reliable, trustworthy product.

Step 3: Isolate and Decompose the Device’s

Software Design

While product developers are normally concerned with
use cases, a threat model encourages the team to think

about abuse cases. An abuse case is an attack scenario

in which a malicious user wishes to abuse, rather than

use, a system. The threat modeling process helps to

generate abuse cases by “decomposing” a device’s

software design to isolate the area’s most susceptible to

abuse.

When brainstorming on abuse cases, consider:

 The data on the deviceand data in systems that

can be accessed by the device.

 The input sources that could be used to attack

the device software. These could include

network data streams to the device operating

110 | P a g e w w w . i j l t e m a s . i n

system, installed applications, GPS signals,

and cellular voice/data entry.

 Physical challenges that could arise if the

device finds its way into the hands of an

attacker. For instance, how would you protect
sensitive data if the device is stolen?

After enumerating the assets of value and decomposing

the device’s software design, a development team can

generate a thorough list of threats that could negatively

impact the device or system.

Step 4: Identify Threats

The goal of the threat modeling exercise is to identify

as many threats as possible. To do this, development

teams should use the “CIA method” and consider the

events that would impact the Confidentiality, Integrity,

or Availability of each asset.

Many devices, for example, reveal geographic

information about the user. The “Google Latitude”

function on a smart phone can reveal a user’s physical

location, and a log of “cardholder present” credit card

transactions can identify a user’s movements. Devices

with embedded software often log access to system

resources. When compromised, this information

can provide a blueprint of interesting and valuable

information on the device.

Once a development team has identified any and all
threats that could compromise the confidentiality,

integrity and availability of its assets, it must consider

the type of attacks that could be used to realize each

threat. The most efficient way to identify potential

attacks is to develop an “attack tree” for each threat.

An attack tree is a visual tool that documents threats

and attacks for an asset, as shown in Figure 1. The

threat is documented at the top of the tree and it is

followed by a set of branches that represent potential

attack methods. These branches are then further

subdivided to identify the conditions or techniques that
could be used in a successful attack.

In this example, the threat tree not only identifies the

type of attacks that are possible when an attacker

impersonates a user, it also lists the conditions and

techniques under which a successful attack could take

place. This information can be used in the next step of

the threat model to identify the specific vulnerabilities

within the embedded code.

Figure 1: Sample Attack Tree for an impersonation threat

Step 5: Identify Vulnerabilities

A good threat tree will list all of the conditions under

which an attack could be successful. Imagine that a

threat model has highlighted that credit card

information could be obtained from the system via a
“man-in-the-middle attack” on a communication

channel. In this case, the attack tree would show that

the attack could be successful if credit card information

is transmitted over the data channel in clear text. If the

development team finds that this condition is met in its

system, it should develop a mitigation strategy to block

the attack. If that condition is not met, an attack is not

possible and the team can concentrate its efforts

elsewhere.

At the end of this process, the threat model will
comprise a list of vulnerabilities that can be used to

plan an attack mitigation strategy.

111 | P a g e w w w . i j l t e m a s . i n

Step 6: Repeat

Threat models are organic documents and should be
revisited frequently. Conditions change, designs

change, and the threat landscape changes. The DVD

world, for example, provides an excellent example of

the need for continuous threat modeling. When DVD

players were first created, the keys for DVD Digital

Rights Management (DRM) were included in the

actual DVD player hardware. Hardware players were

initially tamper-proof, but the introduction of software

DVD players made it much easier for attackers to

reverse-engineer the keys and breaks the encryption.

The original threat model for an early DVD player

would have listed only the original threat: “DVD
Content is Stolen”, and its mitigation: “DVD content is

encrypted, encryption keys are stored in tamper-proof

hardware”. With the introduction of software players,

the threat model had to be updated to identify and

mitigate the new risks.

Figure 2 | Threat Modeling Activity Summary Table

4.0 Putting it into Practice:

Identifying & Mitigating

Vulnerabilities in Code

While threat modeling can uncover the broad threats

and vulnerabilities of an embedded system, it cannot

mitigate those threats. To do so, development teams

must practice defensive coding, engage in frequent

code reviews, and perform penetration testing.

4.1 Code Defensively
Defensive coding is a form of design that aims to
ensure the continuing function of software and source

code in spite of misuse or abuse. While a threat model

can identify vulnerabilities due to design, a certain

percentage of vulnerabilities will always result from

coding flaws.

Developers often find that many of the vulnerabilities

identified in the threat model result from only a

handful of coding errors. One simple insecure coding

technique that is performed repeatedly can contribute

to dozens of vulnerabilities. Hackers frequently exploit
the best-known vulnerabilities, so developers that code

defensively and eliminate the most common coding

flaws can substantially reduce the risk of a successful

attack.

Moreover, threat modeling often uncovers threats that

can only be mitigated through good coding practices.

If, for example, an organization has identified a threat

that requires a centralized input and data validation

112 | P a g e w w w . i j l t e m a s . i n

strategy, it will require code-level fixes to accomplish

the validation. These principles might include

validating all input for length, range, format and type.

By following defensive coding practices – most

notably, the use of automated tools to identify weak
coding practices and uncover vulnerabilities –

development teams can dramatically reduce the

frequency and impact of bad code.

4.2 Automated Source Code Analysis

Automated source code analysis (SCA) tools provide a

high return on investment for any software

development organization by helping to eliminate bugs
early in the development cycle. Industry estimates hold

that the cost of addressing a code defect after a build is

10 times higher than addressing it during development.

While automated programs do not remove the need for

manual code testing, they can dramatically reduce the

time spent on code reviews and focus manual tests on

the most important and “hardest-hitting” issues.

Static analysis tools, for example, can identify

hundreds – if not thousands – of coding problems.

These include:

 Common vulnerabilities such as buffer

overflows, uninitialized data, use of dangling

pointers, injection flaws and known insecure

APIs and libraries.

 Secure coding guidelines such as CWE,

CERT, DISA and OWASP, as well as any

custom checks or guidelines that would be

unique to your code base.

 Reliability-related concerns such as memory
leaks, memory allocation, resource

management and more.

 Long-term maintainability concerns such as

architectural violations, dead code, unused

local variables, and other coding style best

practices.

By incorporating automated static analysis tools,

organizations can simplify existing peer review

processes and automate a number of code review

activities. Moreover, by running this analysis early in
the software development process, developers can

eliminate simple mistakes before they make it into the

code stream.

In fact, static analysis tools are ideal for educating

developers about the coding problems listed above.

Most developers are not security experts, but source

code analysis tools can help to inform and educate

developers of the most common security issues. By

examining static analysis results, developers can
identify the frequent problems and, over time, make

improvements in their processes to avoid them.

It is important to note, however, that static analysis can

only identify specific coding problems. It is up to the

development team to decide whether those problems

need to be addressed. That decision depends on

established trust boundaries and the costs/benefits

associated with the repairs. Development teams can

speed these decisions by consulting the threat trees

established during the threat modeling process to

determine whether the vulnerabilities represent true
threats to the system.

4.3 Engage in Frequent Code Reviews

Security code reviews are critical in the development

of secure code. They unveil vulnerabilities that are

difficult to discover through testing processes since

they examine the source code directly and review code

paths deep inside an application. Through a focused
and iterative approach to code review that consists of

both manual and automated inspection, code reviews

can be performed as often as every check-in to

discover bugs before they make it into the build. These

frequent code reviews not only identify additional

vulnerabilities, they also allow developers to gain

experience and learn collectively from their mistakes.

To perform an effective code review:

1. Identify code review objectives. Consult the
threat model to prioritize risks and identify the

most important vulnerabilities.

2. Perform a preliminary scan. Use both control

flow and data analyses to step through logical

conditions in the code, understand the

conditions under which each block will be

executed, and trace data from the points of

input to the points of output.

3. Review for common issues. Scan embedded

code for common vulnerabilities around data
access, input and data validation,

authentication, physical possession and replay

attacks.

113 | P a g e w w w . i j l t e m a s . i n

4. Review for unique issues. Consult the threat

model and scan embedded code for

vulnerabilities that may be unique to the

particular system, device or application in

question.

Code review should be started early in the software

development process and repeated until the team is

satisfied with the results or until a pre-established time

limit has been reached. At the end of this process, the

development team will have a set of prioritized

vulnerabilities and inspection questions in hand that it

can use to make future reviews even more effective.

4.4 Perform Security Testing

Security testing should be one of the final steps

performed in an embedded software security project.

Through a penetration test, development teams can

gain confidence that their earlier design review, threat

modeling and code review activities have hardened the

software against attack. If teams have followed the

security best practices outlined in this white paper

throughout the development lifecycle, the problems

that they will identify during this final stage will

typically be minor and simple to remedy.

When an application is ready for a penetration test,

leverage the threat model to improve the test plan. Use

the threat model to determine attack vectors and

conditions under which the attacks may be successful.

Security vulnerabilities can be subtle, so be sure to

consider all signs of a successful attack, such as an

unexpected change to a file system, or unexpected

network traffic.

Like a code review, a security test can also use both

automated and manual tools. Automated SCA tools can
be used to speed analyses, and manual testing

techniques can be employed to both discover and

address elusive vulnerabilities.

5.0 The Importance of Threat

Modeling

Modern embedded systems are approaching the

complexity of a traditional PC while introducing

additional complexities related to connectivity and

resource constraints. Through the use of key security

engineering activities including threat modeling, code

reviews, coding best practices, and security testing,

development teams can detect and address security

vulnerabilities in their embedded code quickly,
efficiently and prior to product release.

6.0 About Klocwork and Security

Innovation

Klocwork helps developers create more secure and

reliable software. Our tools analyze source code on-

the-fly, simplify peer code reviews and extend the life

of complex software. Over 1000 customers, including

the biggest brands in the mobile device, consumer

electronics, medical technologies, telecom, automotive,
military and aerospace sectors, have made Klocwork

part of their software development process. Tens of

thousands of software developers, architects and

development managers rely on our tools everyday to

improve their productivity while creating better

software.

Security Innovation is an established leader in the

software security and cryptography space. For over a

decade the company has provided products, training

and consulting services to help organizations build and
deploy more secure software systems and protect their

data communications.

7.0 Conclusion

Breaking Embedded Software News:

 “Google Confesses Android Security Breach,

Rolls out Fix”

 “Sony Announces PS2 Bank Security Breach”

 “Microsoft Warns Xbox Live Users of

Security Threat”

 “RSA Offers to Replace Tokens After Attack”

Embedded software becomes more ubiquitous and

connected – powering everything from home

appliances and cars to aircraft and mission-critical
systems – organizations must take additional steps to

ensure that the code produced is both secure and

reliable.

ACKNOWLEDGEMENTS

We would like to thank everyone, especially

developers, early adopters, I.T. enthusiast and family

members who provided support and followed up with

us.

114 | P a g e w w w . i j l t e m a s . i n

REFERENCES

[1.] https://www.securityinnovation.com/
[2.] https://www.securityinnovation.com/solutions

[3.] https://www.securityinnovation.com/products/

secure-development-knowledgebase.html

[4.] https://www.securityinnovation.com/products/

encryption-libraries/arm.html

[5.] https://www.securityinnovation.com/company

[6.] http://blog.securityinnovation.com/

[7.] https://www.securityinnovation.com/security-

lab/tools/

[8.] https://www.securityinnovation.com/security-

lab/crypto/306.-ntru-technical-reports.html

[9]
https://www.securityinnovation.com/services/soft

ware-assessment/software-security-threat-

model.html

