
Volume I Issue X DEC 2012 IJLTEMAS ISSN 2278 - 2540

26 | P a g e w w w . i j l t e m a s . i n

Performance of Efficient Sorting Algorithms

for Duplicate Data

Kinjalkumar A.Prajapati
B.S.Patel Polytechnic,

Ganpat Vidyanagar, Mehsana, Gujarat

E-mail:kap_1989@yahoo.com

Abstract-Today many comparisons based sorting

algorithm that cope with popular task of sorting. Quick
sort is one of divide and conquer based algorithm, which
has O (n log n) complexity for n data values. This paper
titled Improved Quick sort Algorithm is based on duplicate
input data. Till now there are many papers on the random

data values. But none of them identify the issue that what
about the duplicate data which are used at different
applications. To have some experimental data to sustain
these comparisons three representative algorithms were
chosen (classical quicksort, merge sort, heapsort). The
improved quicksort gives better average time and no of
comparisons for repeated data.

Keywords- Algorithm, Comparisons, Quick sort,

Duplicate data, Sorting

I.INTRODUCTION

 Sorting is a fundamental task that is performed

by most computers. It is used frequently in a large

variety of important applications. All spreadsheet

programs contain some sort of sorting code. Database

applications used by insurance company, banks, and

other institutions all contain sorting code. Because of

the importance of sorting in these applications, many

sorting algorithms have been developed with varying

complexity. Bubble sort, insertion sort, and selection

sort are slow sorting algorithms have a theoretical

complexity of O (N2). Even though these algorithms
are very slow for sorting large arrays, the algorithm

is simple, so they are not useless.

 If an application only needs to sort small arrays,

then it is satisfactory to use one of the simple slow

sorting algorithms as opposed to a faster, but more

complicated sorting algorithm.

For these applications, the increase in coding time

and probability of coding mistake in using the faster

sorting algorithm is not worth the speedup in

execution time. Of course, if an application needs a

faster sorting algorithm, there are certainly many

ones available, including quick sort, merge sort, and
heap sort. These algorithms have a theoretical

complexity of O (N log N). They are much faster

than the O(N2) algorithms and can sort large arrays

in a reasonable amount of time. However, the cost of

these fast sorting methods is that the algorithm is

much more complex and is harder to correctly code.

But the result of the more complex algorithm is an

efficient sorting method capable of being used to sort

very large arrays. In this paper, a comparative

performance evaluation of improved Quick Sort with
three different sorting algorithms:

 Quick sort, Heap sort, and Merge sort with

repeated data is presented. Quick sort is an in-place

sorting algorithm. In-place sorting algorithms play an

important role in many fields such as very large

database systems, data warehouses, data mining, etc.

Such algorithms maximize the size of data that can

be processed in main memory without input/output

operations.

II. LITERATURE SURVEY

 Quick Sort is a well known fast algorithm for

data sorting. It was invented by Hoare [1, 2].Quick

Sort is the default sorting scheme in some operating

systems, such as UNIX. Till now in the literature

they considered the distinct data as given in [3-15]

and there are different variations of quick sort also

proposed like multikey. In none of the literature they

had raised an issue when data will be repeated. In

they talk about improved heap sort algorithm and

compare with quick sort and existing heap sort

algorithm and given test conditions on the different
scenario. The duplicate data will be very useful at

different places. Assume that any mobile company

wants to see monthly data or yearly data based on the

city or name than there are same data can be repeated

many times. At railway station they displayed the list

of passengers for railway in terms of chart so if the

chart is based on the name of passengers then the

name will be repeated often. But in all above

applications the data which already sorted doesn’t

give any advantage for future.

 Assume that currently we search for all the
mobile company customers in 2009 year and then in

2010 year. So both searches will be independent. So

Volume I Issue X DEC 2012 IJLTEMAS ISSN 2278 - 2540

27 | P a g e w w w . i j l t e m a s . i n

even insertion sort also not useful in this type of
scenario. The repeated can also be useful in bank

databases, Schools and other organizations. So this

paper raise the issue and importance of duplicate data

in various filed and according to that modified the

original quick sort algorithm and get the better time

and comparisons utilization. The rest of paper

organize as follow: section 3 give the overview of

comparison based sorting algorithms with modified

quick sort algorithm, section 4 give the result

analysis and section 5 will give conclusion.

III. COMPARISON BASED SORTING
ALGORITHMS

 In addition to varying complexity, sorting

algorithms also fall into two basic categories -

comparison based and no comparison based. A

comparison based algorithm orders a sorting array by

comparing the value of one element against the value

of other elements. Algorithms such as quick sort,

merge sort, heap sort, bubble sort, and insertion sort

are comparison based. Alternatively, a non-

comparison based algorithm sorts an array without

consideration of pair wise data elements. Radix sort
is a non-comparison based algorithm that treats the

sorting elements as numbers represented in a base-N

number system, and then works with individual digits

of N.

A. Quick Sort

 The quick sort is an in-place, divide-and-

conquer, massively recursive sort. Quick sort is also

known as a partition-exchange sort because that term

captures the basic idea of the method. One of the

elements is selected as the partition element. The

remaining items are compared to it and a series of
exchanges is performed. When the series of

Exchanges is done, the original sequence has been

partitioned into three subsequences:

1. All elements less than the partition element

2. The partitioning element in its final place

3. All elements greater than the partition element

At this stage, step 2 is completed and quick sort will

be applied recursively to steps 1 and 3. The sequence

is sorted when the recursion terminates. Quick sort

runs in O (n log (n)) on the average.

B. Heap Sort

 Heap sort is a comparison-based sorting

algorithm. Heap sort is an in-place algorithm, but is

not a stable sort. Heap sort

is an elegant and efficient sorting method based on

the operation of heaps. A heap is a “complete binary

tree”. It is constructed by placing a node called the
root, and then going down the page from left to right,

connecting the two nodes under each node until all of

the nodes have been placed. The two nodes below

each node are called its children, and the node above

each node is called the parent. The item in each node

should be larger than its children, so the root contains

the largest item to be sorted. Heap sort is a true “in

place” sort because it uses no extra memory and is

always guaranteed to sort N elements in N log N

steps, no matter what the inputs are. However, since

its inner loop is about twice as long as that of quick

sort, it is about twice as slow on average than quick
sort. The basic idea is to create a heap containing the

items to be sorted, and then to remove them in order.

This means that an element is pulled off from the top

of the heap, and then the largest element below is

moved to the top. This continues until all of the

elements are moved to the top and removed, yielding

a sorted array.

C. Merge Sort

 Merge sort is a comparison-based sorting

Algorithm. It is stable, meaning that it preserves the
input order of equal elements in the sorted output. It

follows divide and conquer method. Merge sort runs

in O (n log (n)) on average. Conceptually, merge sort

works as follows:

1) Divide the unsorted list into two sub list of about

half the size.

2) Divide each of the two sub lists recursively until

we have list sizes of length 1, in which case the list

itself is returned.

3) Merge the two sub lists back into one sorted list.

Elements are moved to the top and removed, yielding

a sorted array.

D. Modified Merge Sort

 The main disadvantage with quick sort is in

worst case when data is already sorted whether in

increasing or no increasing order or lexically. Even

this is true for particular sub partition of a given

partition. So the modification is if somehow we can

check the given sub partition is already sorted than

we not require selecting the pivot element and going

for further procedure. The advantage of quick sort

procedure is if data is already sorted in decreasing
order and we assume that we always select pivot

element as middle element than within one pass of

the algorithm Partition, the data will be sorted in

increasing order. So that’s why we use middle

element as pivot element in our modified algorithm.

In the original algorithm we require to change only

Volume I Issue X DEC 2012 IJLTEMAS ISSN 2278 - 2540

28 | P a g e w w w . i j l t e m a s . i n

partition algorithm and add some module in the
stating of the partition algorithm which will take care

of the sorted data.

Algorithm check_order (low, high, a [1...n])

{

i=low

while (i <high)

{

if(a[i]>a[i+1])

break

i=i + 1

}
if (i=high) return -1;

call Partition(low, high, a [1...n]) }

The above is simple call to check_order function

which was called from quick sort main algorithm.

And then this algorithm check whether the given

algorithm is sorted or not by checking from the lower

side the moment is found that the array is sorted in

increasing order of its data the algorithm will return -

1 or it will called the usual partition algorithm which

will return the partition index in array for the pivot
element.

TABLE 1

COMPARISON OF IMPROVED QUICKSORT

No. of

Data

Data

Range

[Time][Comparisons] in μsec

Merge

sort

Heap

sort

Quick

 Sort

Modified

Quick Sort

10 1-10
[9]

[101]

[3]

[139]

[3]

[52]

[3]

[54]

100 1…100
[37]

[1890]

[36]

[1040]

[20]

[886]

[20]

[1056]

 1…10
[40]

[1860]

[36]

[1034]

[18]

[810]

[17]

[823]

1000 1…1000
[393]

[28373]

[511]

[15502]

[258]

[13736]

[251]

[14098]

 1…100
[397]

[28303]

[536]

[15339]

[228]

[12315]

[209]

[11776]

 1…10
[367]

[27931]

[468]

[14912]

[187]

[11293]

[128]

[7886]

10000 1…10000
[4927]

[384471]

[6843]

[297857]

[3219]

[182625]

[3164]

[190243]

 1…1000
[4836]

[384657]

[6819]

[204830]

[2961]

[176192]

[2787]

[175099]

 1…100
[4665]

[384021]

[6565]

[203929]

[2234]

[139244]

[1202]

[76959]

 1…10
[4358]

[376509]

[6180]

[198081]

[900]

[136893]

[461]

[70057]

IV. RESULT ANALYSIS

Table 1 shows the comparison of modified quick sort

with other sorting algorithm. It shows that as

repeated data grows the modified algorithm work

better. The Time shown in table is in terms of

Microseconds.

V. CONCLUSIONS

From the above Table1, we conclude that when

repetition of data is increasing in such cases
traditional merge sort, heap sort and quick sort are

having larger number of comparisons.

New technique suggested reduces these comparisons

by a countable margin. So, we suggest that if, we are

having repeated data to sort than suggested modified

algorithm would give better performance.

REFERENCES

[1] C.A.R. Hoare, Quicksort, Computer Journal, Vol. 5, 1, 10-

15(1962).

[2]C. Hoare, FIND (Algorithm 65), Communications of ACM, 4

(1961),pp. 321–322.

[3] Knuth, D.E., 1988. The Art of programming-Sorting and

Searching. 2nd Edn. Addison Wesley, ISBN: 020103803X.

[4] Cormen, T.H. et al. Introduction to Algorithms. 2nd Edn.,

2001. ISBN:0262032937

[5] H. M. Mahmoud, R. Modarres, and R. T. Smythe. Analysis of

quickselect: An algo-rithm for order statistics. ITA – Theoretical

Informatics and Applications, 29(4):255–276, 1995.

[6] R. S. Francis and L. J. H. Pannan. A parallel partition for

enhanced parallel quicksort. Parallel Computing, 18(5):543–550,

1992.

[7] H. Mahmoud, Average-case analysis of moves in quick select,

in:Proceedings of Workshop on Analytic Algorithms and

Combinatorics,ANALCO, 2009

[8] B. Vall´ee, J. Cl´ement, J. A. Fill, and P. Flajolet. The number

of symbol comparisons in quicksort and quickselect. In 36th

International Colloquium on Automata, Lan-guages and

Programming (ICALP 2009),volume 5555 of Lecture Notes in

Computer Science, pages 750–763,Berlin, Heidelberg, 2009.

Springer.

[9] M. A. Weiss. Data Structures and Algorithm Analysis in

C++. Addison-Wesley,1998.[10] H. Mahmoud, R.Modarres,

and R. Smythe,Analysis of quickselect: An algorithm for order

statistics, RAIRO, Theoretical Informatics and Applications,

29 (1995), pp. 255–276.

[11] P. Kirschenhofer, H. Prodinger , C. Martínez, Analysis of

Hoare's FIND algorithm with median-of-three partition,

Random Structures & Algorithms, v.10 n.1-2, p.143-156,

Jan.–March 1997.

[12] H. M. Mahmoud. Average-case analysis of moves in

quick select. In C.Mart´ınez and R. Sedgewick, editors, Proc.

Volume I Issue X DEC 2012 IJLTEMAS ISSN 2278 - 2540

29 | P a g e w w w . i j l t e m a s . i n

of the 6th Workshop on Analytic Algorithmics and

Combinatorics (ANALCO), pages 35–40.SIAM, 2009.

[13] P. Hennequin, Combinatorial analysis of Quick-sort

algorithm, RAIRO: Theoretical Informatics and Applications,

23 (1988), pp. 317–333.

[14] P. Kirschenhofer and H. Prodinger, Comparisons in

Hoare’s Find algorithm, Combinatorics,Probability, and

Computing, 7 (1998) pp.111–120.

[15] Helmut Prodinger, Multiple Quickselect—Hoare's Find

algorithm for several elements, Information Processing

Letters, v.56 n.3,p.123-129, Nov. 10, 1995 .

.

