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Abstract:- The flow through a porous medium has been 

of considerable interest in recent years particularly 

among geophysical fluid dynamicity. An example in the 

geophysical context is the recovery of crude oil from the 

pores of reservoir rocks. The instability of the plane 

interface between two uniform superposed and 

streaming fluids through porous medium has been 

investigated by Sharma and Spanos [9]. More recently, 

Sharma et al.  [10] have studied the thermosolutal 

convection in Rivlin-Ericksen fluid in porous medium in 

the presence of uniform vertical magnetic field. The 

initial stationary state, whose stability we wish to 

examine is that of an incompressible elastico-viscous 

Rivlin-Ericksen fluid in which there is a horizontal 

streaming in the x-direction with velocity U(z) through 

a homogeneous, isotropic porous medium. The 

governing equations were averaged using the volume 

averaging technique. This technique has been used 

widely for flow in porous media. It was demonstrated 

by William and O'Neill (1976), that averaging technique 

can be applied to various transport processes in porous 

media. It is interesting to note from above that for the 

special case when perturbations in the direction of 

streaming are ignored, the system is unstable for 

potentially unstable configuration and the system is 

stable for potentially stable configuration and not 

depending upon kinematic viscoelasticity, medium 

porosity and medium permeability. A great number of 

applications in geophysics may be found in a recent 

book by Phillips [7]. The gross effect when the fluid 

slowly percolates through the pores of the rock is given 

by Darcy’s law.  
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1.INTRODUCTION 
Volume averaging technique results in achieving 
manuscript initial objective which is to associate with every 

point in a porous medium a local volume average of the 
differential equations of continuity and momentum . When 
we say every point, we include the solid phase as well as 
the fluid phase and the solid-fluid phase interface. The 
phase average of the continuity and the momentum  
equations can be written as:  
 

   (1) 

and 

 

(2) 

Applying the averaging rules (William and O'Neill, 1976; 

William and Sampath, 1982), to each term of Eq. (1) and 
(2). When assuming the no slip condition at the interface 
and a constant mass generation for α phase, the final 
volume averaged continuity equation will take the 
following form:  
 

 (3) 

After accounting for the no-slip condition at the interface, 
the final form of averaged momentum equation will be:  

 
                                                                                         (4)      (4) 
The increased sophistication of oil/gas recovery 
technologies has brought with it increased operating and 
material costs and therefore a greater demand for sound 
process designs. Mathematical models of fluids flow in 
petroleum and gas reservoirs have become key tools by 
which reservoir engineers develop and implement these 
designs. Using mathematical models together with various 

characterizations of the rock-fluid system being modeled, 
the engineer can test various operating strategies, compare 
different recovery technologies, and formulate hypotheses 
in diagnosing the performance of ingoing projects. It is 
impossible to specify the microstructure in a realistic 
porous medium completely. Porous media can be 
characterized without specifying the porous geometry in all 
its details. The well-known approach of doing so is by 
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constructing a simplified geometric model, like bundle of 
capillary tubes, grain models, network models, and 
percolation model, for each specific porous medium of 
interest. Most of the models describing the flow through 
fractured porous media, such as (Thomas et al., 1983; 

Evans, 1982; Guzman and Khaled., 1992; Fung, 1993; 
Warren and Root, 1963; Zekai, 1988; Nitao, 1990; 
Arbogast, 1993; Celis et al., 1992; Lee and Tan, 1987; 
Alder and Thovert, 1999; Panfilov and Panfilov, 2000) 
were based on Zheltov's model (Zheltov et al., 1960), and 
used his concept of dual-porosity dual-permeability region. 
They differentiate between two flow regions, one 
representing the discrete matrix where the other represents 

the continuous fracture network. Based on that, they 
considered mainly two types of equations: the equations 
describing flow in fracture system and equations describing 
flow in the matrix.  
The main objective of the manuscript is the development of 
a mathematical model which predicts the flow phenomena 
in low permeability fractured porous media. It is rather 
impossible to apply conservation laws directly to each pore 

in porous medium and to find a possible numerical or 
analytical solution. Instead a semi-empirical approach has 
been used where some constitutive equations are needed, 
and a set of equations are developed based on flow through 
the entire medium. It is known in reservoir engineering that 
the productive strata (producing formation or beds) could 
be made up of rocks described by the following 
characteristics and properties; porosity, permeability, 

granulemetric composition, elasticity, resistance to rupture, 
compression, deformation and saturation. Using these 
characteristics and properties, the conditions of oil and gas 
fields' development can be determined. Pore structure of 
reservoir rocks is very complex. In the case of fractured 
porous media, the porosity can be placed into two classes:  
1. Primary porosity, which is highly interconnected and can 
be correlated with permeability, this could be the porosity 
of the homogeneous rocks. This region always has high 

resistance (low permeability) to flow.  
2. Secondary porosity, formed by a fracture, usually this 
porosity is the product of geological movements, hydraulic 
fracturing and chemical processes. Although it does not 
contain a fraction of fluid reserve as large as that of the first 
class, it greatly affects the flow. Moreover, it has low 
resistance to flow compared to the primary porosity region.  
For the case of low permeability fractured porous media a 

network model is developed, the simultaneous existence of 
two phases of water and gas is considered. The wetting 
fluid occupies the smaller pores while the non-wetting fluid 
occupies the larger ones, and when these two fluids exist in 
the same pore diameters, they move in plug flow fashion. 
Simultaneous two-phase flow exists in the fractures and 
similar flow patterns as in the case of two-phase flow in a 
pipe with momentum transfer across phase boundaries are 

assumed. Further, there is continuous movement of the 
rigid porous media due to changes in stress distribution, 
particularly during production.  
The pore size distribution in the medium is represented by 
three mean pore diameters: gas pore network, liquid pore 
network, and fractures. This representation along with the 
movement of the rock matrix assumption result in a model 

with five different phases: 1) gas in the porous matrix (gas 
network), 2) liquid in the porous matrix (liquid network), 3) 
gas in the fracture, 4) liquid in the fracture, and 5) rock 
matrix. An average pore diameter and length for each 
network were calculated using the gamma distribution 

function.  

2. GOVERNING EQUATIONS 
 In the formulation of the mathematical model the 
following assumptions are made:  
1) The reservoir matrix is homogeneous and isotropic. 
Furthermore, there is inaccessible pore volume. 
2) The reservoir rock and the working fluids are slightly 
compressible. 

3) Because of the absence of both thermal action and 
chemical reaction, the process is considered to be 
isothermal. 
4) We assume a constant mass generation of phase π, 
where π can be either solid (β) or fluid (α) phase.  
5) Gas and liquid are immiscible; furthermore we assume 
that there is no slip condition at the interface between the 
phases The continuity equation for the Cartesian system of 

coordinate may be written, in tensor notation, as:  

     
    (5) 

where: is the rate of accumulation of mass per unit 

volume at specific point (say p); is the net flow 

rate of mass out of p per unit volume; is mass 
generation of phase π; and the momentum equation as:  

       (6) 

where is the rate of π momentum increase at the 

fixed point (say p), is the net rate of π 

momentum carried into p by the fluid or solid flow , 

is the net π pressure force at p, is the net π 

stress force, where is the viscous stress tensor for phase 

π, is π body force at p, where if gravity is the 

only body force we consider and is momentum 

generation at point p.  

3.CONSTITUTIVE EQUATIONS 
In general a fluid flow problem is governed by several 
equations. First there are the basic equation of continuity, 
three momentum equations and an energy relation. Second, 
there are the constitutive equations, which are not basic, but 
they do apply to group of substances. Various transport 

coefficients are introduced in the constitutive relations. 
They are quasi-thermodynamic properties that depend on 
the composition of the fluid and its thermodynamic state. 
Third, the thermodynamics of fluid must be specified, this 
may be done through the fundamental equation s(ρ,e) for 
the substance, or, more commonly, through two equation of 
state P(ρ,T) and e(ρ,T). All of these equations are required 
to give a well-posed problem for a general flow situation.  
For the considered isothermal case, in order to use Eq. (5) 

and Eq. (6) we must insert expressions for the density, 
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pressure, and stress of each phase. Also mass and 
momentum transfer between the phases should be defined 
and inserted.  

 

 

A. PORE GEOMETRY ANDVOLUME FRACTIONS 
It has been believed that the smaller pores in the 
consolidated material of tight sands cause the segregation 
of mobile fluids such that the wetting fluid occupies the 
smaller pores. The non-wetting fluid, and possibly an 
immobile wetting fluid layer lining the walls, would 
therefore occupy the large pores of this water wet material. 
This is a result of the large difference between the gas and 

liquid pressure caused by the small radius of curvature of 
the gas-liquid interface. In addition to the assumption that 
the mobile fluids are separated on a pore level, it has been 
assumed that two networks for the fractured porous media 
exist.  
Based on this network assumption, five different phases 
exist in the model as specified bellow:  
I. Solid phase:  

1. Gas in low permeability porous media (gp)  
2. Liquid in low permeability porous media (lp)  
3. Rock matrix (r)  
II. Fracture  
1. gas in the fracture (gf)  
2. liquid in the fracture (lf),  
Governing equations for all these phases should be 
developed from Eq. (5) and Eq. (6).  

The volume fraction for each phase can be defined as:

   (7) 
where Vα(t,x) is the volume of phase α, which is a function 
of the position of the volume element (V) in the reservoir 
and also a function of time. Using equation (7), the volume 
fraction for all five phases is:  

εqp + εlp + εr + εlf = 1   (8)  

as it can be seen from Eq. (8) gas and liquid phases exist 
simultaneously in both pore and fracture networks, then one 
can determine the gas and liquid volume fractions, 
respectively, as:  
 

 
 (9) 
and  
 

  
 (10) 

then, Eq. (8) can be rewritten as:   

εg + εl + εr = 1     (11)  

but from the definition of porosity , which is defined as:  

 
Figure 1: Network Model of Fractured Porous Media 

    (12) 

equation (11) becomes:  

     
    (13) 

B. PRESSURES 
The pressure under reservoir conditions is very high and 
depends on the location of production formation. 
According to Huinink and Michels (2002) and Holditch 
(1989), the pressure for some reservoirs can reach several 
thousand psi (106 and 108 Pa). This requires taking the 
compressibility of moving phases into account. The α phase 

pressure Pα in the volume element was defined by the 

intrinsic average phase pressure , in what follows 

and for simplicity the following notation is used:  

    (14) 
In order to reduce the number of independent variables in 
the model, the equation of state to relate the density to the 
pressure for each phase is used.  

Gas Equation of State  
The equation of state for compressible gas is:  

PgVg = ngZgR T,     
   (15)  

substitute for Vg=mg/ρg and ng=mg/Mg into the above 
equation, then, in both fracture and pore networks the gas 
density is:  
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   (16) 

where Mg is the gas molecular weight, pg is the pressure of 
the gas, Zg is the compressibility factor of the gas, R is the 
universal gas constant, and T is the temperature.  

Liquid equation of State 
The liquid phase in this study is water. Under reservoir 
conditions water usually moves with gas, and it contains 

organic material and salt in dissolved form. Pakdel (1994) 
had done an analytical analysis of traveling water into and 
out of the porous media, her chemical analysis showed 
significant difference in the concentration of some 
minerals. This means that the liquid phase contains some 
salt materials in dissolved form that should be taken into 
consideration in the model. The solution of most of the 
technological problems in gas reservoir engineering 
requires determination of volume coefficient, coefficients 

of volume and heat expansions, viscosity and density of 
water and reservoir condition. The necessary data to find all 
these physical characteristics of water are pressure, 
temperature, and mineralization (saltiness). The density of 
water under reservoir conditions was found by Mishinko et 
al. (1984), in the form:  

  (17) 

where is water density under standard conditions 

(kg/m3), and is the volume coefficient of water under 

reservoir conditions. Both and are discussed in 
more details in Mishinko et al. (1984), Shirkovski (1987) 
and Al-Khlaifat (2005).  

Rock Equation of State 
In order to validate the assumption of deformable porous 
medium, the relationship between pressure and density of 

matrix rock must be taken into account in the model. 
Petrographic thin-section analysis of pore geometry and 
grain size for low permeability porous media have been 
done by William and Sampath (1982) and Holditch (1989), 
their analyses showed that all sandstone samples in staged 
field experiments are fine- or very-fine-grained (0.06 to 
0.25 mm). Most silt is coarse silt, between 0.031 and 0.063 
mm. The samples are classified texturally as sandstone, 

silty mudstone and silty clay-stone. The porous media for 
which the model is developed belongs to texturally 
(sandstone) group, this kind of stone is classified as 
granular rock.  
A porous granular rock was modeled by an aggregate of 
identical, randomly stacked spherical particles for which 
the effective density was found, according to Digby (1981), 
to be:  

 

  (18) 

where ρs is the grain density; is the local porosity of the 
volume element which is assumed to be equal to the 
flowing porosity of the rock defined by Eq. (13); and δ* is 
half of the distance by which the centers of two adhering 
spheres approach one another when a purely normal force 
Ys acting through the center of each sphere is applied, δ* 

can be determined as:   

  (19) 

where a is an average radius (a>b); b is the radius of 
adhesion region typically between 0.0 and 0.05Rs; and Rs is 
the grain's radius. The normal force acting through the 
center of two adhering spheres is:  

  (20) 

where μs is the grain shear modulus (38x109 Pa), and vs is 
the grain Poisson's ratio (0.2). The force Ys for a set of 

spheres, where the pressure can reach the pressure of 
granular rock in reservoir Pr, is purely hydrostatic loading 
(overburden) and determined as:  

              
                                                                (21) 

Equation (21) agrees exactly with the similar equation 

discussed in Brandt (1955), for the special case of a "dry" 
packing of spheres, where in Brandt's paper the average 
number of contact points is n =8.84. From Eqs. (18), (19) 
and (21), one obtains the following equation for the 
normalized contact radius, a/Rs, as:  

   
                                       (22) 

From Eq. (22) we can find the value of (a).x/Rs satisfies the 

following cubic equation:  

(23)

C. Capillary Equilibrium 
When two immiscible fluids are in contact in the interstices 
of a porous medium, a discontinuity in pressure exists 
across the interface separating them. Its magnitude depends 
on the interface curvature at the point. Here "point" is the 
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microscopic point inside the void space. The difference in 
pressure is called capillary pressure Pc, and determined as:  

Pc=Pnw-Pw   (24)  
Where Pnw, Pw are the pressures in the non-wetting and 
wetting phases, respectively. Because of the two regions 

assumption in the model, Eq. (24) can be applied to both 
pore networks and fractures in the form:  

Pcp=Pgp-Plp   (25)  
and  

Pcf=Pgf-Plf   (26)  
Where Pcp, Pcf are the capillary pressures in the pore and 
fracture networks, respectively; Pgp, Pgf are the gas 
pressures in the pore and fracture networks, respectively; 

and Plp, Plf are the liquid pressures in the pore and fracture 
networks, respectively. Capillary effect takes place usually 
when wetting phase becomes in contact with porous matrix. 
If the fluid pressure in the fracture is high enough to 
overcome capillary pressure in the matrix, the fluid 
penetration into the pore networks occurs. Pressure 
required to overcome capillary forces at the entrance of the 
pore is called pore entry pressure. Capillary pressure value 

depends on the diameter of the pores in the pore networks 
and on the fracture openings in the fracture network.  
Because of the two networks' assumption in the matrix, Eq. 
(24) can be written simultaneously for gas and liquid pore 
networks as the following:  

Pcgp =Pgp-Plf    (27)  
and  

Pclp=Pgf-Plp    (28) 

where Pcgp is the capillary pressure between the gas in the 
pore network and the liquid in the fracture; and Pclp is the 
capillary pressure between the liquid in the pore network 
and the gas in the fracture. As long as Reynolds number in 
porous media is small, all of the above capillary 
equilibrium equations are valid under both static and 
dynamic conditions (Semrau, 1986). This pressure 
equilibrium across various interfaces of pores results in the 
equality between the sums of Eqs. (25-26) and Eqs. (27-

28).  
In the current model, under constant hydrostatic 

(overburden) pressure, the decrease of fluid pressure 
because of its production causes an increase which leads to 
closing the smaller diameter (water network) and decrease 
the number of interconnection between water and gas 
networks, this causes significant change in the rock matrix 
porosity, which modifies the mean pore sizes. Because of 

the deformable medium assumption, the average pore size 
for both liquid and gas networks will be found by using 
statistical approach (Section IV.G). The above effect does 
not take place in the fracture, because the later is composed 
of large pores that lead to minimal volume variations of the 
fracture network. Sources of useful information for the 
dynamic response of porosity to changes in rock pressure 
are limited and the information itself tends to be more 

qualitative than quantitative. Thus in the current model a 
constant fracture volume is acceptable in the considered 
volume element, therefore εgf +εlf =const.  

D. GAS AND LIQUID MASS TRANSFER  
The characteristic feature of an unsteady-state motion of a 
fluid in fractured rocks is the fluid transfer between the 
rock matrix and the fractures. Therefore, in investigating 

the flow of fluids in fractured porous medium it is 
necessary to take into consideration the outflow of fluids 
from the matrix blocks into the fractures. The process of 
fluid transfer from the pores takes place essentially under a 
sufficiently smooth change of pressure, and, therefore, it 

can be assumed that this pressure is quasi-stationary, i.e. it 
is, explicitly, independent of time. It is obvious in such a 
case that during homogeneous fluid flow in the fractures, 
the volume of the fluid Vf, which flows from the matrix 
blocks into the fractures per unit of time and unit of volume 
of the rock, depends on the following (Zheltov, 1960),: (a) 
viscosity of the fluid μf; (b) pressure difference between the 
pores and the fractures Pfp, Pff; and (c) certain characteristic 

of the rock, which can only be geometrical one, i.e. they 
might be the dimensions of length, area, volume, etc. The 
fluid volume was found to be:  

          (29) 

where η is some new dimensionless characteristics of the 
fractured rock; and Pfp, Pff are the fluid pressures in the 
pore and fracture, respectively. Thus for the mass of the 

fluid which flows from the pores into the fracture per 
unit of time, per unit volume of the rock, the following 
equation is valid (Zheltov, 1960):  

          
       (30) 
where ρf is the density of the fluid. Because of the two 

phase flow in the fracture, the mass transfer between either 
gas or liquid network and the fracture is determined by Eq. 
(30) as:   

  
    (31) 

and    (32) 

where cg and cl are mass transfer coefficients which 
characterize the gas and liquid transfer from the pore 
network to the fracture, these coefficients may not be 
directly related to the permeability of the porous medium. 
There is a similarity in the form between the above 

equations and Darcy's law (Petkovic et al., 2004).  

E. VISCOUS STRESS TENSORS 
The model of fractured porous media is characterized by 
three volume fractions: εr, εp and εf corresponding to the 
solid phase, fluid phase in the pores and fluid phase in the 
fractures, respectively. Newton's viscosity law implies that 
the fluid has the following properties (Bird et al., 2002): (1) 
Stress is a linear function of strain rate; (2) The coefficients 
in the expression for the stress are functions of the 

thermodynamic state; (3) When the fluid is stationary, the 
stress is the thermodynamic pressure; (4) The fluid is 
isotropic. The porous medium is isotropic; (5) The stress 
tensor is symmetric; (6) The mechanical and 
thermodynamic pressures are equal. The average normal 
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viscous stress is zero. Stokes assumption applies λ= -2μ/3. 
The averaged viscous stress expression derived by Al-
Khlaifat (2005) is:  
                      

    (33) 

In the above equation μα has been assumed approximately 
constant within an averaging volume but may vary 
globally, especially for rock phase. The last two terms in 

this equation involve surface integrals of the fluid velocity 
along the α-β phase interface. Knowing that the porous 
medium deforms but not rapidly, the gradient of these 
surface integrals will be negligible because of the no-slip 
condition over the fluid solid interface. Taking what stated 
above into consideration and applying averaging property 

to the left side of Eq. (33), then Eq. (33) 

reduces to:  
                    

    (34) 

By further manipulation, Eq. (34) becomes:  

                             

   (35) 
For simplicity, terms containing ∂j μα and ∂j μλ will be 
assumed to be negligible in comparison with the second 
derivative terms, then Eq. (35) becomes:  

       (36) 

F. INTERFACIAL MOMENTUM TRANSFER 
Average momentum transfer across the interface A*αβ 
between phases α and β in the volume element V is 
represented by the last term of the right hand side of Eq. 
(6). The interfacial momentum transfer term is expressed in 
terms of body forces, Qi

βα. In the pore network, both fluids 

will transfer momentum only with the rock (or with connate 
water), in this case Darcy and non-Darcy equations will be 
used to express the momentum transfer terms for liquid and 
gas phases, respectively, in the following forms:  

    (37) 

and  

 

   
  (38) 
where Qi

lr and Qi
rg are the momentum exchanges from 

liquid and gas in both pores and fractures to the rock, 
respectively; kl and kg are the effective phase permeabilities 
of the liquid and gas phases, respectively, during the 
simultaneous filtration of multiphase systems. This type of 
permeability depends on the physico-chemical properties of 
both porous medium and each phase taken separately, the 

percentage of phases in the system, and the actual pressure 
gradients. These permeabilities can be defined by:  
                                kζ=kABSζkRELζ   (39)  
where kABSζ ≡ kAζ is the absolute permeability of a porous 
medium, which measures the ability of porous medium to 
transmit only one of the phases, either gas or water, and 
always determined experimentally. It should be mentioned 
that there is no physicochemical interaction between the 

porous medium and the one phase fluid; kRELζ ≡ krζ is the 
relative permeability, which usually defined as the ratio 
between the effective and the absolute permeabilities. 
Relative permeability for granular rock has been 
determined by Gimattodinov (1974) as a function of phase 
saturation by the following formulas:  

- Relative permeability of gas phase krg, where Sg is the 

coefficient of the gas saturation is:  

krg (Sgp)=0 for 0≤Sgp ≤0.1   (40)  

and  

          (41)   (41) 

- Relative permeability of water phase krw is:  

                          

(42) 
and  
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krw (Sgp)=0 for 0.8≤Sgp ≤1   (43) 
where saturation of ζ phase Sζ is the fraction of the pore 
volume occupied by phase ζ. Obviously, for the considered 
volume element the sum of Sζ is equal to one, and for the 
two network assumption, one can write:  

Sgp+ Sgf + Slp + Slf = Sg + Sl = 1  (44)  

The saturation of ζ phase Sζ, where ζ can be either gas or 

liquid is determined as:  

   
    (45) 
where Vζ(t,x) is the volume of phase ζ that is a function of 
the position of the volume element V in the reservoir, and 
also a function of time; Vυ is the total volume of pores 
(voids) in the volume element.  

Next, Eq. (44) is expressed in terms of volume fraction and 
porosity, where the porosity is defined as the property of 
the rock to contain voids (pores, coverns, and fractures 
(fissures)). It thus determines the ability of a rock to hold 
gas and liquid and can be found by the following formula: 

    (46) 

substituting the Vυ value from Eq. (46) into Eq. (45) and 
using the definition of volume fraction, Eq. (7), to obtain: 

    (47) 

using Eq. (47), the relative permeability Eqs. (40-43) will 

be expressed as function of εgp/  instead of Sgp, and Eq. 

(44) becomes:  

εgp +εgf +εlp +εlf = .   (48) 

Because of the deformable porous medium assumption gas 
and liquid volume fractions will be found using statistical 
approach.  

4. CONCLUSION 
As the fracture dimensions (fracture opening) is much 
larger than the pore diameters, the momentum transfer 
across the interfaces of gas-liquid, gas-rock, and liquid-
rock, should be considered differently from that one in the 
pore. As long as water is the wetting fluid in this study, it 
tends to be in touch with porous medium and wet it, leaving 
the gas phase in the fracture in-between two layers of water 
moving in the same direction. Interfacial momentum 
transfer for annular flow with liquid on the wall for flow in 

a round tube was found as:     
 

     (49) 

Because the cross section of the fracture is not circular the 
hydraulic radius rh is used instead of the tube diameter D, 
where the former is defined as rh =s/p, in which S is the 
cross section of the stream (fracture) and p is the wetted 
perimeter. Replacing the diameter D of circular tube by 4r, 

Eq. (49) for two-phase flow in the fracture becomes:                                     

 
     (50) 

In the case when gas phase flows on the surface of the 
porous medium, εgp is replaced by εlf.  
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