

105

VOLUME I ISSUE V ICAE-2012 ISSN 2278-2540

Design and Implementation of Optimized

Light-Weight Communication system in Grid

Nitin Pandya1 ,Tarun Sharma2

Shankersinh Vaghela Bapu Institute of Technology,VASAN,GANDHINAGAR

Gujarat Tehcnological University

Ahmedabad, Gujarat, India nitin.pandya@bapugkv.ac.in1,

tarun.sharma@bapugkv.ac.in2

Abstract—The advantage of high performance networks in
conjunction with low-cost, powerful computational machines have
made possible the development of a new set of technologies termed
”computational grids”. These technologies are making possible
the creation of very large-scale distributed computing systems by
interconnecting geographically distributed computational resources
via very high-performance networks. This provides tremendous
computational power that can be brought to bear on large-scale
problems in several domains. In many problems remain before Grid
computing can reach its full potential. One particularly difficult
issue is that of utilizing fully the available bandwidth while being
in some sense fair to competing traffic flows. It has been widely
demonstrated that TCP, the communication protocol of choice for
most distributed application, often performs quite poorly in the
emerging high-bandwidth high-delay network environments. This
has led to significant research on the development of user-level
applications that can circumvent some of the performance problems
inherent in TCP.

Index Terms—Light-Weight Communication,Grid Comput-
ing,Distributed Systems,Multi-casting

I. INTRODUCTION

Research efforts have focused on the development of Grid

computing, a fundamentally new set of technologies that create

large-scale distributed computing systems by interconnecting

geographically distributed computational resources via very

high-performance networks. The advanced applications being

developed to execute in Grid environments include distributed

collaboration across the Access Grid, remote visualization of

terabyte (and larger) scientific data sets, large-scale scien-

tific simulations, Internet telephony, and multimedia appli-

cation.Challenges in designing such infrastructure arise due

to the distributed nature of the resources to be used, the

distributed communities, the size of the data to be shared and

the limited network bandwidth.

II. EXISTING METHODOLOGIES

A grid application is defined simply as an application that

is to be executed on a grid and that consists of a number of

grid threads. Grid applications and grid threads are exposed to

the grid application developer via the object-oriented Alchemi

.NET API[4].

Madhuri Bhavsar and Dr.S.N.Pardhan are with department of Computer Sci-
ence and Engineering , Institute of technology, Nirma University, Ahmedabad-
382481

Fig. 1. Basic architecture of the grid

A. Basic architecture of communication system in the grid

The user application is send to the Grid head

node(Manager), which has container in which all layer

for the communication system is described as the Application

model like,thread,task, etc.Then the Allocation Manager

check the available resources and then the Message

Handler/or Dispatcher, send or receive the message for

the communication. There is security mechanism like,

Authentication,Authorization is used for the communication

according to the gird protocol.And finally the Communication

layer can communicate to the other Grid Execution

node(Executor).[9]

mailto:pandya@bapugkv.ac.in1
mailto:sharma@bapugkv.ac.in2

106

Fig. 2. Architecture of communication system

B. Normal flow of alchemi grid

The normal flow of the Alchemi grid is as described below.

There is/are the user application or application client sends

the application thread or the query message to the grid

head node(Manager),which contains the services like message

handler/dispather services, directory services, etc.Grid head

node see the available resources, and send the query message

or the application thread to other grid node.The grid executor

or the execution node compute the application thread or the

query message and give the output back to the grid head

node(Manager), and that node collect the output of from all

other grid execution node and combine it to gather as one and

give it back to the application client or the user.

Fig. 3. Normal flow of alchemi grid

III. MULTI-CAST PROTOCOL

In Grid environment there are several receiver’s, for the

communication the grid head node(Manager) is using the

multi-cast protocol to send or receive the data or for the

communication in the grid.In multi-cast protocol, the sender

and receiver side socket program, in .Net (windows) is used to

design the algorithm. The Proposed algorithm for the multi-

cast protocol is describer for sender and receiver as below.

Sender:
• Declare and initialize all the required variable,

• Validate the input multi-cast IP address,

• Validate the port number,

• Create the instance of IP address and port number and

then create the Socket,

• Set the Time to Live,

• Send the Data Packet,

• Close the socket.

Sender:

// Set the Time to Live

sock.SetSocketOption(SocketOptionLevel.IP, SocketOption-

Name.MulticastTimeToLive, ttl);

Console.WriteLine(”Hello! Welcome ” + ”(return to send,

ESc to quit):”);

while (!done) {

// Read and format input from the terminal

string str = Console.ReadLine();

System.Text.ASCIIEncoding encode = new Sys-

tem.Text.ASCIIEncoding();

byte[] msgToBeSent=encode.GetBytes(str);

// Send the data packet

sock.SendTo(msgToBeSent, 0, msgToBeSent.Length,

SocketFlags.None, ipep);

}

Receiver:
• Declare and initialize all the required variable,

• Validate the input multi-cast IP address,

• Validate the port number,

• Create the instance of IP address and port number and

then create the Socket and bind the socket,

• Add membership in the multi-cast group,

• Receive the multi-cast packet,

• Format and output the received packet,

• Drop the membership and close the socket.

Receiver:

// Create the EndPoint class

receivePoint = new IPEndPoint(IPAddress.Any, 0);

EndPoint tempReceivePoint = (EndPoint)receivePoint;

while (!done) {

byte[] recData = new byte[MAX LEN];

// Receive the multicast packets

int length = sock.ReceiveFrom(recData, 0, MAX LEN,

SocketFlags.None, ref tempReceivePoint);

// Format and output the received data packet

System.Text.ASCIIEncoding encode = new Sys-

tem.Text.ASCIIEncoding();

Console.WriteLine(”Received ” + length + ” bytes

from ” + tempReceivePoint.ToString() + ”: ” +

encode.GetString(recData, 0, length)); }

// Drop membership

sock.SetSocketOption(SocketOptionLevel.IP, SocketOp-

tionName.DropMembership, new MulticastOption(mcIP,

IPAddress.Any));

107

B. Avg bytes sent to the grid executor node

Fig. 4. Data Transmission in Multi-cast

A. API’s used in Multi-cast protocol

Sender:

• New connection type.

• Connect to port on array of destination address.

• Single write sends data to all hosts.

Receiver:

• No API changes.

• IGMP is used to join or leave the group.

• Accept data on both uni-cast/multi-cast ports.

• tcp input() accepts:

– Packets addressed to existing uni-cast destination.

– Those addressed to multi-cast group.

IV. RESULTS

A. Various Grid node and Execution Time

Fig. 5. Job Execution time

Fig. 6. Avg bytes sent to the grid executor node.

C. Avg bytes receive from the grid executor node

Fig. 7. Avg bytes receive from the grid executor node.

V. ANALYSIS OF RESULT

From the various kind of graphs i have shown the different

parameter for measuring the performance of the grid. In first

Graph, shows that the execution time of the application or

the job is decrees according to the increasing the no of grid

execution node.In second and third graph, the AVG bytes

sent/receive on the grid is increase according to the grid

execution node.

108

VI. CONCLUSION

Light-Weight Communication helps in improving the per-

formance parameters like, execution time, network band-

width,memory usage,data sent/receive, etc.Since existing

TCP/IP protocol when used in grid, does not provide, priority

based routing,rate and burst control, multi-casting, etc.An

attempt is made to overcome this and build the Light-Weight

Communication Protocol. From the various result, it can be

concluded that using ”Light-Weight Communication System in

Grid”. Application’s Execution time can be reduced up-to 10-

20% of the normal Execution time. Other identified parameter

is volume of data transfer and the network protocol used in

Grid, specifically for the multi-casting.

REFERENCES

[1] Deqing Zou, Laurence T. Yang, Weizhong Qiang, Xueguang Chen,
Zongfen Han, ”An Authentication and Access Control Framework
for Group Communication Systems in Grid Environment”,21st
International Conference on Advanced Networking and
Applications(AINA’07),0-
7695-2846-5/07 2007 IEEE.

[2] I. Foster, C. Kesselman, L. Pearlman, et al.,”The Community Authoriza-
tion Service: Status and Future”, In Proceedings of Computing in High
Energy Physics 03 (CHEP ’03), 2003.

[3] Fu Yanfang, Liu Bailin,”Research of Communication Technology for
Simulation Grid System”, 978-1-4244-2800-7/09 2009 IEEE.

[4] R. Buyya, M. Murshed, ”GridSim:A Toolkit for the Modeling and Sim-
ulation of Distributed Resource Management and Scheduling for
Grid Computing”, Concurrency and Computation: Practice and
Experience, vol.14,pp.1175-1220, November 2002.

[5] Geoffrey Fox, ”MESSAGE PASSING: FROM PARALLEL COMPUTING
TO THE GRID” 1521-9615/02/ 2002 IEEE.

[6] H. T. Ho, The MITRE Corporation, Bedford, MA, ”Windows NT Multi-
threaded Design in Multi-Link Translator and Display system”, 0-7803-
5749-3/99 1999 IEEE.

[7] ”High Performance Cluster Computing, Architectures and Systems”
Chapter 10, ”Lightweight Messaging Systems”,Rajkumar Buyya.

[8] Lazar Kirchev, Minko Blyantov, Vasil Georgiev, Kiril Boyanov, Maciej
Malawski, Marian Bubak, Stavros Isaiadis, Vladimir Getov, ”USER
PROFILING FOR LIGHTWEIGHT GRIDS”.

[9] George Clapp, Joel W. Gannett, Ronald Skoog,”Requirements and
Design of a Dynamic Grid Networking Layer”, 0-7803-8430-W04F
2004 IEEE.

[10] Craig A. Lee, Eric Coe, B. Scott Michel, James Stepanek,Ignacio
Solisy, J. Matt Clark, Brooks Davis,”Using Topology-Aware
Commu- nication Services in Grid Environments” Proceedings of
the 3rd IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID.03),0–7695-1919-9/03 2003 IEEE.

[11] Jack Dongarra, Thomas Sterling, Horst Simon, and Erich
Strohmaier,”HIGH-PERFORMANCE COMPUTING:
 CLUSTERS,
CONSTELLATIONS, MPPS, AND FUTURE DIRECTIONS”, 1521-
9615/05 2005 IEEE.

[12] Ryan X. Wu, Andrew A. Chien,Matti A. Hiltunen, Richard D. Schlicht-
ing, Subhabrata Sen, ”A High Performance Configurable Transport
Protocol for Grid Computing”, 0-7803-9074-1/05 2005 IEEE.

[13] Marinho P. Barcellos,Maziar Nekovee, Michael Daw,”High-
Performance Reliable Multicasting for Grid Applications”, Proceedings
of the Fifth IEEE/ACM International Workshop on Grid Computing
(GRID04)1550-5510/04 2004 IEEE.

[14] P. G. Viscarola, W. A. Mason,”Windows NT Device Driver Develop-
ment”, OSR Open Systems Resources, Inc. 1999.

[15] ”A networking approach to grid computing”,Willey Edition,2004,Daniel
Minoli.

