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Abstract: Association rule mining, one of the most important and well researched techniques of data mining, was 

first introduced in. It aims to extract interesting correlations, frequent patterns, associations or casual structures 

among sets of items in the transaction databases or other data repositories. However, no method has been shown to be 

able to handle data streams, as no method is scalable enough to manage the high rate which stream data arrive at. 

More recently, they have received attention from the data mining community and methods have been defined to 

automatically extract and maintain gradual rules from numerical databases. In this paper, we thus propose an original 

approach to mine data streams for Association rule mining. Our method is based on Q-Based and FP growth in order 

to speed up the process. Q-based are used to store already-known for order to maintain the knowledge over time and 

provide a fast way to discard non relevant data while FP growth. 

 

1. Introduction of FP growth  

The problem of mining association rules 

from a data stream has been addressed by many 

authors but there are several issues (as 

highlighted in previous sections) that remain to 

be addressed. In the following section existing 

literature based on the problems in data stream 

mining that is addressed. The work in this 

domain can be effectively classified into three 

different domains namely, exact methods for 

Frequent Item set Mining, Approximate Methods 

and Memory Management techniques adopted 

for data stream mining [1].  

2 Background of study 

Frequent-pattern mining plays an 

essential role in mining associations [1] if any 

length k pattern is not frequent in the database, 

its length (k + 1) super-pattern can never be 

frequent. The essential idea is to iteratively 

generate the set of candidate patterns of length 

(k+1) from the set of frequent-patterns of length 

k (for k ≥ 1), and check their corresponding 

occurrence frequencies in the database.  

The Apriori heuristic achieves good 

performance gained by (possibly significantly) 

reducing the size of candidate sets. However, in 

situations with a large number of frequent 

patterns, long patterns, or quite low minimum 

support thresholds, an Apriori-like algorithm 

may suffer from the following two nontrivial 

costs: – It is costly to handle a huge number of 

candidate sets. For example, if there are 104 

frequent 1-itemsets, the Apriori algorithm will 

need to generate more than 107 length-2 

candidates and accumulate and test their 

occurrence frequencies. Moreover, to discover a 

frequent pattern of size 100, such as {a1.  . . 

a100}, it must generate 2100 − 2 ≈ 1030 

candidates in total. 

This is the inherent cost of candidate 

generation, no matter what implementation 

technique is applied. It is tedious to repeatedly 

scan the database and check a large set of 

candidates by pattern matching, which is 
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especially true for mining long patterns. Can one 

develop a method that may avoid candidate 

generation-and-test and utilize some novel data 

structures to reduce the cost in frequent-pattern 

mining? This is the motivation of this study [5]. 

        In this work, we develop and integrate 

the following three techniques in order to solve 

this problem. First, a novel, compact data 

structure, called frequent-pattern tree, or FP-tree 

in short, is constructed, which is extended prefix-

tree structure storing crucial, quantitative 

information about frequent patterns. To ensure 

that the tree structure is compact and 

informative, only frequent length-1 items will 

have nodes in the tree, and the tree nodes are 

arranged in such a way that more frequently 

occurring nodes will have better chances of node 

sharing than less frequently occurring ones.  

    Subsequent frequent-pattern mining 

will only need to work on the FP-tree instead of 

the whole data set. Second, an FP-tree-based 

pattern-fragment growth mining method is 

developed, which starts from a frequent length-1 

pattern (as an initial suffix pattern), examines 

only its conditional-pattern base (a “sub-

database” which consists of the set of frequent 

items co-occurring with the suffix pattern), 

constructs its (conditional) FP-tree, and performs 

mining recursively with such a tree[5][6]. The 

pattern growth is achieved via concatenation of 

the suffix pattern with the new ones generated 

from a conditional FP-tree. 

 

Concept Hierarchy: 

                                           

Figure 1: concept hierarchy 

3.  Data preparation 

The data of association rule mining is 

used for finding the frequent itemset and closed 

frequent itemset. The click stream is a sequence 

of mouse click made by every user. The 

transactions are generated by eliminating noisy, 

and very short or very long access sequences. 

The dataset from www. fimi.com. 

 

3.1 Introduction 

Association Analysis is the discovery of 

association rules attribute-value conditions that 

occur frequently together in a given data set. 

Association analysis is widely used for market 

basket or transaction data analysis. Association 

Rule mining techniques can be used to discover 

unknown or hidden correlation between items 

found in the database of transactions. An 

association rule [1, 3, 4, and 7] is a rule, which 

implies certain association relationships among a 

set of objects (such as „occurs together‟ or „one 

implies to other‟) in a database. Discovery of 

association rules can help in business decision 

making, planning marketing strategies 

etc.Apriori was proposed by Agrawal and 

Srikant in 1994. It is also called the level-wise 

algorithm. It is the most popular and influent 

algorithm to find all the frequent sets. The 

mining of multilevel association is involving 

items at different level of abstraction. For many 

applications, it is difficult to find strong 

association among data items at low or primitive 

level of abstraction due to the sparsity of data in 

multilevel dimension. Strong associations 

discovered at higher levels may represent 

common sense knowledge. For example, instead 

of discovering 70% customers of a supermarket 

that buy milk may also buy bread. It is also 

interesting to know that 60% customer of a super 

market buys white bread if they buy skimmed 

milk. The association relationship in the second 

statement is expressed at lower level but it 

conveys more specific and concrete information 

than that in the first one. To describe multilevel 

association rule mining, there is a requirement to 

find frequent items at multiple level of 

abstraction and find efficient method for 

generating association rules. The first 

requirement can be fulfilled by providing 

concept taxonomies from the primitive level 

concepts to higher level. There are possible to 

way to explore efficient discovery of multiple 

level association rules. One way is to apply the 

existing single level association rule mining 
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method to mine Q based association rules. If we 

apply same minimum support and minimum 

confidence thresholds (as single level) to the Q 

levels, it may lead to some undesirable results. 

For example, if we apply Apriori algorithm [1] 

to find data items at different level of abstraction 

under the same minimum support and minimum 

confidence thresholds. It may lead to generation 

of some uninteresting associations at higher or 

intermediate levels. 

1. Large support is more likely to exist at 

high concept level such as bread and 

butter rather than at low concept levels, 

such as a particular. 

 

3.2 Fundamental of Q- based FP Tree 

The previous chapters have described the 

fundamental background behind closed item set 

mining, work objectives, overall architecture, 

and experimental design. This chapter will focus 

on the experimental findings. Both Q-based and 

FP growth were tested on synthetic datasets and 

compared against predefined performance 

metrics such as Accuracy, computational 

performance, and Memory consumption. 

Supposed our Database is given in this format.  

4. Proposed Algorithm 

Algorithm 1: FP tree 

Step1: Start for finding the frequent item set 

Step2: Arrange them according to the base 

ascending or descending order 

Step3: Put minimum support 4 in the data base: 

figure ('Name‟,‟ Elements with minimum value 

is >4') 

Step4:Suitable('Data',strcat(str,'=',num2str(strc)),'

Units','pixels','Position',[20,0,390,160]); 

Step5:hp=ipanel ('Title‟,‟ Elements with 

minimum value is 

>4','TitlePosition','centertop','FontSize', 20); 

Step6: FPTree; time (1) =toc tic 

Step 7: Calculate the cpu time for FP tree. 
            ylabel ('CPU Time in 

second'); set 

(gca,'XTickLabel',{'FP 

Tree','Q_based_FP_Tree'}); 

 

Descriptions of Algorithm1: 

 

Step1.Data set: We apply data set  

Step2. First we apply FP tree in this Dataset and 

then find the frequent itemset at min <4% 

Step3. Element with minimum support Value<4 

Step4.Form a FP-tree. 

 

Example of Algorithm 1: 

Data set: 

 

Table1: 

Find the frequent itemset at min <4% 

 

Table 1.1 

 

Element with minimum support Value<4% 
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Table 1.2 

FPGrowth.

R0OT Node

Node 1 A=6 Node 2B=3 Node3 C=3

Node 4 D=2Node 5 E=2 Node 6 C=4 Node 7 C=1 Node 8 E=1 Node 9 D=2 Node 10 D=1 Node 11 F=2

Node 12 C=2 Node 13 D=3 Node 14 E=2 Node 15 G=2 Node 16 D=1 Node 17 F=1 Node 18 E=2  Node 19 G=1

Node 20 D=2 Node 21 E=2 Node 22 F=2 Node 23 E=1 Node 24 F=1

Node 25 G=1

Fig 2.  FP tree. 

Algorithm 2: Q_based_FP_Tree 

Step1: Start for finding the Frequent item set 

Step2.Arrange them in Table format no need to 

arrange in ascending or descending order 

because it is Q based technique. So the element 

come first they serve first 

Step3: Put minimum support 4 in the data  

Base: figure ('Name‟,‟ Elements with minimum 

value is >4') 

Step4:Suitable('Data',strcat(str,'=',num2str(strc)),'

Units','pixels','Position',[20,0,390,160]); 

Step 5: hp =ipanel ('Title‟,‟ Elements with 

minimum value is 

>4','TitlePosition','centertop','FontSize', 20); 

Step6: QFPTree; time (1) =toc tic; basedFPTree; 

time (2) =toc; 

Figure (); bar (time,'g'); 

Step 7: Calculate the cpu time for FP tree. 

ylabel('CPU Time in second'); 

set(gca,'XTickLabel',{'FP 

Tree','Q_based_FP_Tree'}); 

 

Descriptions of Algorithm 2: 

Step1: Find the Frequent item set. 

Step2.Arrange them in Table format , the 

element come first will serve first. 

Step3: Put minimum support 4 in the data  

Step 4: Form a Q Based tree. 

Example of Algorithm 2: 

Data set: 

 

 

Element with minimum support Value<4% 

 

 

Q-based FP-Tree 
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R0OT Node

Node 1 A=6 Node 2 B=3 Node3 C=4 Node 4 E=3 Node 5 D=2

Node 6 F=1 Node 7 E=1 Node 8 C=2 Node 9 G=1 Node 10 B=1 Node 11 D=1 Node 12 C=1 Node 13 D=2 Node 14 D=1 Node 15 E=1 Node 16 F=2 Node 17 B=1 Node 18 F=1  Node 19 E=1 Node 20 C=1

Node 21 F=1 Node 22 G=2 Node 23 D=1 Node 24 B=1 Node 25 E=1 Node 26 E=3 Node 27 B =1 Node 28 F =1 Node 29 G=1 Node 30 A =1 Node 31 B=1 Node 32 B=1 Node 33 G=1

Node 34 C=1 Node 35 C=1 Node 36 D=1 Node 37 A=1 Node 38 F=1 Node 39 A=1 Node 40 A=1

Node 41 E=1

 

Fig 3.Q based tree 

4.2 Findings from Experiment 1 

This experiment was mainly designed for 

comparing Data structure using Q FP-Tree and 

FP-Tree with respect to performance. We first 

varied the minimum support threshold while 

keeping the delta parameter constant. We 

recorded the accuracy, performance and memory 

consumption for Data structure and then repeated 

the procedure for FP tree. For this experiment, 

we have used dense datasets generated using the 

IBM data generator (IBM). The Recall and 

Precision were calculated by comparing Data 

structure using FP Tree and FP tree results 

against the Apriority implementation process is 

repeated at time Ts3 with tuple T3 checking that  

 

5 Software Evaluations:  

We have taken the 200 data set and 

make the frequent itemset for Q-based_FP-Tree 

approach. Code is implemented in Mat lab.     

 

 

5.1 Explanation:  

The discrenibility matrix corresponding 

to the sample database  shown in table1 with 

Itemset={1,2,3,4,5….},C={A,B,C,D,E}APPLY 

4% SUPPORT than 

L={A,B,C,D,E,F,G}={11,10,10,9,8,7,5} 

 

5.2 Dataset Selection 

The datasets used in this paper is used 

by various Data mining experts in their research. 

The elements in the datasets which are 

represented in the numeric format, easy to 

evaluate the processes, which involved in those 

mining concepts. These datasets consists of 

frequent itemset in each record level. In record 

level they are separated by special identification. 

The elements are separated by space. The 

original values of Mushroom and Connect 

datasets observations represented by its index 

values using mining concepts. The frequent 

items and its associative datasets are easy to 

calculate and represented as a flat file (or) text 

file. The dataset which are used for the 

evaluation contains following characteristics. 

 

Table 1.3 

DATA # Item Transaction 

Mushroom 120 23 

Connect 30 43 

 

5.3. Result and Comparison graph: 
Under large minimum supports, FP-

Growth runs faster than FP-Graph while running 

slower under large minimum supports. Fig 2 and 

3 show what minimum support used in 

experiments. Both algorithms adopts a divide 

and conquer approach to decompose the mining 

problem into a set of smaller problems and uses 

the frequent pattern (FP-tree) tree and (QFP) data 

structure to achieve a condensed representation 

of the database transactions. Under large 

minimum supports, resulting tree and graph in 

relatively small size so with this condition FP-Q 

does not take advantages of small memory space 

and also page fault for both algorithm is almost 

equal. But as minimum supports decrease 

resulting data structure size rapidly increase, it 

require more memory space , at this point 

advantage of FP-Q come in existence with less 

page fault FP-Q considerable work well with 

high dense database along with small minimum 

supports, it shown in Fig. 2 and 3 . Response 

time FP Growth tree good but total run time for 

large database, FP-Q good because it gives less 

page fault. FP Growth Tree uses tree for 

arranging the items before mining, where more 

than one node can contain single item. This 

causes repetition of same item and needs more 

space to store many copies of same item. 
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Table 1.4 

Support FP Growth Q-FP 

90 0.93 0.45 

70 0.109 0.124 

30 0.187 0.179 

15 1 .89 

5 30.89 27.11 

 

 
 

Graph 1 

CPU utilization using fP growth and Q -FP 

tree 

 

Table 1.5 

Support FP Growth Q-FP 

90 0.93 0.45 

70 0.109 0.124 

30 0.187 0.179 

15 1 .89 

5 30.89 27.11 

 

 
Graph 2 

Memory utilization of FP growth and Q  FP 

tree 

6. CONCLUSION 

Data stream mining is one of the most 

intensely investigated and challenging work 

domains in contemporary work in the data 

mining discipline as a whole. The peculiarities of 

data streams render conventional mining 

schemes inappropriate. 

In this dissertation we used novel 

approach for mining the closed item set from a 

Data stream. We have implemented Q based-tree 

to store the closed item set with their support 

count for this we use Apriori principal to reduce 

the unnecessary power set creation and prune 

closed item set with frequent item set.  Proposed 

work develops an incremental frequent item set 

mining Algorithm based on the Data stream.  

The Data Stream can find the lot of data in data 

set. We compare Q based-tree with FP tree. Our 

Experiment shows that Q based-Tree not only 

outperformed FP growth but it provides the short 

time for pruning the frequent item set. 

In this work, we presented an overview of a 

novel approach for mining the frequent item sets 

from a data stream. We have implemented an 

efficient closed prefix Q based-tree to store the 

intermediate support information of frequent 

item sets.   
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