
Volume I Issue V 2012 ICAE-2012 ISSN 2278 – 2540

39

Analysis and Implementation of FP & Q-

FP tree with minimum CPU utilization in

association rule mining

Yasha Sharma

M.Tech (Software System) SATI Vidisha, Vidisha (M.P)

Yashasharma78@gmail.com

Abstract: Association rule mining, one of the most important and well researched techniques of data mining, was

first introduced in. It aims to extract interesting correlations, frequent patterns, associations or casual structures

among sets of items in the transaction databases or other data repositories. However, no method has been shown to be

able to handle data streams, as no method is scalable enough to manage the high rate which stream data arrive at.

More recently, they have received attention from the data mining community and methods have been defined to

automatically extract and maintain gradual rules from numerical databases. In this paper, we thus propose an original

approach to mine data streams for Association rule mining. Our method is based on Q-Based and FP growth in order

to speed up the process. Q-based are used to store already-known for order to maintain the knowledge over time and

provide a fast way to discard non relevant data while FP growth.

1. Introduction of FP growth

The problem of mining association rules

from a data stream has been addressed by many

authors but there are several issues (as

highlighted in previous sections) that remain to

be addressed. In the following section existing

literature based on the problems in data stream

mining that is addressed. The work in this

domain can be effectively classified into three

different domains namely, exact methods for

Frequent Item set Mining, Approximate Methods

and Memory Management techniques adopted

for data stream mining [1].

2 Background of study

Frequent-pattern mining plays an

essential role in mining associations [1] if any

length k pattern is not frequent in the database,

its length (k + 1) super-pattern can never be

frequent. The essential idea is to iteratively

generate the set of candidate patterns of length

(k+1) from the set of frequent-patterns of length

k (for k ≥ 1), and check their corresponding

occurrence frequencies in the database.

The Apriori heuristic achieves good

performance gained by (possibly significantly)

reducing the size of candidate sets. However, in

situations with a large number of frequent

patterns, long patterns, or quite low minimum

support thresholds, an Apriori-like algorithm

may suffer from the following two nontrivial

costs: – It is costly to handle a huge number of

candidate sets. For example, if there are 104

frequent 1-itemsets, the Apriori algorithm will

need to generate more than 107 length-2

candidates and accumulate and test their

occurrence frequencies. Moreover, to discover a

frequent pattern of size 100, such as {a1. . .

a100}, it must generate 2100 − 2 ≈ 1030

candidates in total.

This is the inherent cost of candidate

generation, no matter what implementation

technique is applied. It is tedious to repeatedly

scan the database and check a large set of

candidates by pattern matching, which is

Volume I Issue V 2012 ICAE-2012 ISSN 2278 – 2540

40

especially true for mining long patterns. Can one

develop a method that may avoid candidate

generation-and-test and utilize some novel data

structures to reduce the cost in frequent-pattern

mining? This is the motivation of this study [5].

 In this work, we develop and integrate

the following three techniques in order to solve

this problem. First, a novel, compact data

structure, called frequent-pattern tree, or FP-tree

in short, is constructed, which is extended prefix-

tree structure storing crucial, quantitative

information about frequent patterns. To ensure

that the tree structure is compact and

informative, only frequent length-1 items will

have nodes in the tree, and the tree nodes are

arranged in such a way that more frequently

occurring nodes will have better chances of node

sharing than less frequently occurring ones.

 Subsequent frequent-pattern mining

will only need to work on the FP-tree instead of

the whole data set. Second, an FP-tree-based

pattern-fragment growth mining method is

developed, which starts from a frequent length-1

pattern (as an initial suffix pattern), examines

only its conditional-pattern base (a “sub-

database” which consists of the set of frequent

items co-occurring with the suffix pattern),

constructs its (conditional) FP-tree, and performs

mining recursively with such a tree[5][6]. The

pattern growth is achieved via concatenation of

the suffix pattern with the new ones generated

from a conditional FP-tree.

Concept Hierarchy:

Figure 1: concept hierarchy

3. Data preparation

The data of association rule mining is

used for finding the frequent itemset and closed

frequent itemset. The click stream is a sequence

of mouse click made by every user. The

transactions are generated by eliminating noisy,

and very short or very long access sequences.

The dataset from www. fimi.com.

3.1 Introduction

Association Analysis is the discovery of

association rules attribute-value conditions that

occur frequently together in a given data set.

Association analysis is widely used for market

basket or transaction data analysis. Association

Rule mining techniques can be used to discover

unknown or hidden correlation between items

found in the database of transactions. An

association rule [1, 3, 4, and 7] is a rule, which

implies certain association relationships among a

set of objects (such as „occurs together‟ or „one

implies to other‟) in a database. Discovery of

association rules can help in business decision

making, planning marketing strategies

etc.Apriori was proposed by Agrawal and

Srikant in 1994. It is also called the level-wise

algorithm. It is the most popular and influent

algorithm to find all the frequent sets. The

mining of multilevel association is involving

items at different level of abstraction. For many

applications, it is difficult to find strong

association among data items at low or primitive

level of abstraction due to the sparsity of data in

multilevel dimension. Strong associations

discovered at higher levels may represent

common sense knowledge. For example, instead

of discovering 70% customers of a supermarket

that buy milk may also buy bread. It is also

interesting to know that 60% customer of a super

market buys white bread if they buy skimmed

milk. The association relationship in the second

statement is expressed at lower level but it

conveys more specific and concrete information

than that in the first one. To describe multilevel

association rule mining, there is a requirement to

find frequent items at multiple level of

abstraction and find efficient method for

generating association rules. The first

requirement can be fulfilled by providing

concept taxonomies from the primitive level

concepts to higher level. There are possible to

way to explore efficient discovery of multiple

level association rules. One way is to apply the

existing single level association rule mining

Volume I Issue V 2012 ICAE-2012 ISSN 2278 – 2540

41

method to mine Q based association rules. If we

apply same minimum support and minimum

confidence thresholds (as single level) to the Q

levels, it may lead to some undesirable results.

For example, if we apply Apriori algorithm [1]

to find data items at different level of abstraction

under the same minimum support and minimum

confidence thresholds. It may lead to generation

of some uninteresting associations at higher or

intermediate levels.

1. Large support is more likely to exist at

high concept level such as bread and

butter rather than at low concept levels,

such as a particular.

3.2 Fundamental of Q- based FP Tree

The previous chapters have described the

fundamental background behind closed item set

mining, work objectives, overall architecture,

and experimental design. This chapter will focus

on the experimental findings. Both Q-based and

FP growth were tested on synthetic datasets and

compared against predefined performance

metrics such as Accuracy, computational

performance, and Memory consumption.

Supposed our Database is given in this format.

4. Proposed Algorithm

Algorithm 1: FP tree

Step1: Start for finding the frequent item set

Step2: Arrange them according to the base

ascending or descending order

Step3: Put minimum support 4 in the data base:

figure ('Name‟,‟ Elements with minimum value

is >4')

Step4:Suitable('Data',strcat(str,'=',num2str(strc)),'

Units','pixels','Position',[20,0,390,160]);

Step5:hp=ipanel ('Title‟,‟ Elements with

minimum value is

>4','TitlePosition','centertop','FontSize', 20);

Step6: FPTree; time (1) =toc tic

Step 7: Calculate the cpu time for FP tree.
 ylabel ('CPU Time in

second'); set

(gca,'XTickLabel',{'FP

Tree','Q_based_FP_Tree'});

Descriptions of Algorithm1:

Step1.Data set: We apply data set

Step2. First we apply FP tree in this Dataset and

then find the frequent itemset at min <4%

Step3. Element with minimum support Value<4

Step4.Form a FP-tree.

Example of Algorithm 1:

Data set:

Table1:

Find the frequent itemset at min <4%

Table 1.1

Element with minimum support Value<4%

Volume I Issue V 2012 ICAE-2012 ISSN 2278 – 2540

42

Table 1.2

FPGrowth.

R0OT Node

Node 1 A=6 Node 2B=3 Node3 C=3

Node 4 D=2Node 5 E=2 Node 6 C=4 Node 7 C=1 Node 8 E=1 Node 9 D=2 Node 10 D=1 Node 11 F=2

Node 12 C=2 Node 13 D=3 Node 14 E=2 Node 15 G=2 Node 16 D=1 Node 17 F=1 Node 18 E=2 Node 19 G=1

Node 20 D=2 Node 21 E=2 Node 22 F=2 Node 23 E=1 Node 24 F=1

Node 25 G=1

Fig 2. FP tree.

Algorithm 2: Q_based_FP_Tree

Step1: Start for finding the Frequent item set

Step2.Arrange them in Table format no need to

arrange in ascending or descending order

because it is Q based technique. So the element

come first they serve first

Step3: Put minimum support 4 in the data

Base: figure ('Name‟,‟ Elements with minimum

value is >4')

Step4:Suitable('Data',strcat(str,'=',num2str(strc)),'

Units','pixels','Position',[20,0,390,160]);

Step 5: hp =ipanel ('Title‟,‟ Elements with

minimum value is

>4','TitlePosition','centertop','FontSize', 20);

Step6: QFPTree; time (1) =toc tic; basedFPTree;

time (2) =toc;

Figure (); bar (time,'g');

Step 7: Calculate the cpu time for FP tree.

ylabel('CPU Time in second');

set(gca,'XTickLabel',{'FP

Tree','Q_based_FP_Tree'});

Descriptions of Algorithm 2:

Step1: Find the Frequent item set.

Step2.Arrange them in Table format , the

element come first will serve first.

Step3: Put minimum support 4 in the data

Step 4: Form a Q Based tree.

Example of Algorithm 2:

Data set:

Element with minimum support Value<4%

Q-based FP-Tree

Volume I Issue V 2012 ICAE-2012 ISSN 2278 – 2540

43

R0OT Node

Node 1 A=6 Node 2 B=3 Node3 C=4 Node 4 E=3 Node 5 D=2

Node 6 F=1 Node 7 E=1 Node 8 C=2 Node 9 G=1 Node 10 B=1 Node 11 D=1 Node 12 C=1 Node 13 D=2 Node 14 D=1 Node 15 E=1 Node 16 F=2 Node 17 B=1 Node 18 F=1 Node 19 E=1 Node 20 C=1

Node 21 F=1 Node 22 G=2 Node 23 D=1 Node 24 B=1 Node 25 E=1 Node 26 E=3 Node 27 B =1 Node 28 F =1 Node 29 G=1 Node 30 A =1 Node 31 B=1 Node 32 B=1 Node 33 G=1

Node 34 C=1 Node 35 C=1 Node 36 D=1 Node 37 A=1 Node 38 F=1 Node 39 A=1 Node 40 A=1

Node 41 E=1

Fig 3.Q based tree

4.2 Findings from Experiment 1

This experiment was mainly designed for

comparing Data structure using Q FP-Tree and

FP-Tree with respect to performance. We first

varied the minimum support threshold while

keeping the delta parameter constant. We

recorded the accuracy, performance and memory

consumption for Data structure and then repeated

the procedure for FP tree. For this experiment,

we have used dense datasets generated using the

IBM data generator (IBM). The Recall and

Precision were calculated by comparing Data

structure using FP Tree and FP tree results

against the Apriority implementation process is

repeated at time Ts3 with tuple T3 checking that

5 Software Evaluations:

We have taken the 200 data set and

make the frequent itemset for Q-based_FP-Tree

approach. Code is implemented in Mat lab.

5.1 Explanation:

The discrenibility matrix corresponding

to the sample database shown in table1 with

Itemset={1,2,3,4,5….},C={A,B,C,D,E}APPLY

4% SUPPORT than

L={A,B,C,D,E,F,G}={11,10,10,9,8,7,5}

5.2 Dataset Selection

The datasets used in this paper is used

by various Data mining experts in their research.

The elements in the datasets which are

represented in the numeric format, easy to

evaluate the processes, which involved in those

mining concepts. These datasets consists of

frequent itemset in each record level. In record

level they are separated by special identification.

The elements are separated by space. The

original values of Mushroom and Connect

datasets observations represented by its index

values using mining concepts. The frequent

items and its associative datasets are easy to

calculate and represented as a flat file (or) text

file. The dataset which are used for the

evaluation contains following characteristics.

Table 1.3

DATA # Item Transaction

Mushroom 120 23

Connect 30 43

5.3. Result and Comparison graph:
Under large minimum supports, FP-

Growth runs faster than FP-Graph while running

slower under large minimum supports. Fig 2 and

3 show what minimum support used in

experiments. Both algorithms adopts a divide

and conquer approach to decompose the mining

problem into a set of smaller problems and uses

the frequent pattern (FP-tree) tree and (QFP) data

structure to achieve a condensed representation

of the database transactions. Under large

minimum supports, resulting tree and graph in

relatively small size so with this condition FP-Q

does not take advantages of small memory space

and also page fault for both algorithm is almost

equal. But as minimum supports decrease

resulting data structure size rapidly increase, it

require more memory space , at this point

advantage of FP-Q come in existence with less

page fault FP-Q considerable work well with

high dense database along with small minimum

supports, it shown in Fig. 2 and 3 . Response

time FP Growth tree good but total run time for

large database, FP-Q good because it gives less

page fault. FP Growth Tree uses tree for

arranging the items before mining, where more

than one node can contain single item. This

causes repetition of same item and needs more

space to store many copies of same item.

Volume I Issue V 2012 ICAE-2012 ISSN 2278 – 2540

44

Table 1.4

Support FP Growth Q-FP

90 0.93 0.45

70 0.109 0.124

30 0.187 0.179

15 1 .89

5 30.89 27.11

Graph 1

CPU utilization using fP growth and Q -FP

tree

Table 1.5

Support FP Growth Q-FP

90 0.93 0.45

70 0.109 0.124

30 0.187 0.179

15 1 .89

5 30.89 27.11

Graph 2

Memory utilization of FP growth and Q FP

tree

6. CONCLUSION

Data stream mining is one of the most

intensely investigated and challenging work

domains in contemporary work in the data

mining discipline as a whole. The peculiarities of

data streams render conventional mining

schemes inappropriate.

In this dissertation we used novel

approach for mining the closed item set from a

Data stream. We have implemented Q based-tree

to store the closed item set with their support

count for this we use Apriori principal to reduce

the unnecessary power set creation and prune

closed item set with frequent item set. Proposed

work develops an incremental frequent item set

mining Algorithm based on the Data stream.

The Data Stream can find the lot of data in data

set. We compare Q based-tree with FP tree. Our

Experiment shows that Q based-Tree not only

outperformed FP growth but it provides the short

time for pruning the frequent item set.

In this work, we presented an overview of a

novel approach for mining the frequent item sets

from a data stream. We have implemented an

efficient closed prefix Q based-tree to store the

intermediate support information of frequent

item sets.

REFERENCE

[1] R. C. Agarwal, C. C. Aggarwal, and V.

V. V. Prasad. Depth first generation of

long patterns. KDD’00, pages 108–118,

2000.

[2] R. Agrawal, T. Imielinski, and A. N.

Swami. Mining association rules

between sets of items in large databases.

In ACM SIGMOD’93, pages 207–216,

Washington, D.C.1993.

[3] R. Agrawal and R. Srikant. Fast

algorithms for mining association rules.

In VLDB’94, pages 487–499, 1994.

[4] R. Agrawal and R. Srikant. Mining

sequential patterns. In ICDE’95, pages

3–14, 1995.

[5] B. Goethals and M. J. Zaki. Advances

in frequent itemset mining

implementations: Introduction to

fimi03. In Prodeeding of the 1st IEEE

ICDM Workshop on Frequent Item set

Volume I Issue V 2012 ICAE-2012 ISSN 2278 – 2540

45

Mining Implementations (FIMI’03),

Nov 2003.

[6] G. Grahne and J. Zhu. Efficiently using

prefix-trees in mining frequent item

sets. In 1st IEEE ICDM Workshop on

Frequent Item set Mining

Implementations (FIMI’03), Nov 2003.

[7] J. Han, J. Pei, Y. Yin, and R. Mao.

Mining frequent patterns without

candidate generation: A frequent-

pattern tree approach. Data Mining and

Knowledge Discovery, 8:53– 87, 2004.

[8] M. Kamber, J. Han, and J. Chiang. Met

rule-guided mining of multi-

dimensional association rules using data

cubes. In Knowledge Discovery and

Data Mining, pages 207–210, 1997.

[9] H. Mannila, H. Toivonen, and A. I.

Verkamo. Discovery of frequent

episodes in event sequences. Data

Mining and Knowledge Discovery,

1(3):259–289, 1997.

[10] Savasere, E. Omiecinski, and S. B.

Navathe. An efficient algorithm for

mining association rules in large

databases. In VLDB’95, pages 432–444,

1995.

[11] H. Toivonen. Sampling large databases

for association rules. In VLDB’96,

pages 134–145, Sep. 1996.

[12] M. Zaki and K. Gouda. Fast vertical

mining using diffsets. In ACM

SIGKDD’03, Washington, DC, Aug.

2003.

[13] Claudio Lucchese Mining frequent

closed itemsets out of core 2004

