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Abstract — In wireless communication the effect of multipath 

as well as shadowing takes place simultaneously over the 

channel and this phenomena leads to composite fading. In 

this paper Pade approximation approach is used to analysis 

the performance of composite multipath/shadowed fading 

channel. Pade approximation is mathematical modeling tool 

to provide closed form solution for moment generating 

function as well as bit error rate of G-distribution function. 

Bit error rate has been regarded as fundamental 

information for the performance analysis of any 

communication system. G-distribution is a combination of 

Inverse-Gaussian distribution with nakagami distribution. 

This composite distribution is mainly encountered 

distribution in wireless fading environment. Our study 

starts with driving the moment generating function of the 

G-distribution and approximate this function by using 

Pade’s Approximation and calcute the bit error probability 

for DPSK and Noncoherent FSK modulation  All 

simulation is done using Maple-13 software MATLAB and 

result is obtained for outage probability and bit error rate 

versus average signal to noise ratio.  

Index Terms—Pade’s approximation, G-distribution, 

moment generating function, inverse Gaussian distribution, 

Nakagami distribution and composite distributions, average 

signal to noise ratio, bit error probability. 

 

1. Introduction 

 

Wireless is the fastest growing communication 

system for communication that provides higher bit 

rates and lesser complexity for global coverage. In 

wireless communication multipath fading and 

shadowing phenomenon are encountered in different 

scenario. Multipath fading and shadowing reduces 

the performance of wireless communication system. . 

In this case receiver cannot mitigate the effect of 

multipath fading as well as shadowing. The 

composite distribution is used as the perfect 

modeling for channels. In case of outdoor 

communication an electromagnetic signal 

experiences the effect of reflection, diffraction, 

scattering as well as path loss and shadowing. 

One of the best known distribution is shadowed 

nakagami fading distribution [1]. This is the 

generalized distribution of combined Rayleigh-

Lognormal Distribution model [2]-[4]. The main 

drawback of this distribution is that the probability 

density function of this distribution (PDF) of this 

distribution doesn’t provide closed form solution for 

performance evaluation of communication channel. 

So this log-normal distribution is substituted by 

closed form Gamma distribution and obtained K-

distribution [5]. Several composite fading model has 

presented in literature [6]-[7]. 

 In this paper, a very general form of Nakagami-

inverse Gaussian model is considered as a composite 

fading model. We demonstrated that this combination 

gives birth to a closed form composite distribution 
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called the G-distribution [4]. This distribution is used 

to approximate any system in form of closed form 

solution as well as for accurate approximation in 

several shadowing condition. In this paper we 

approximate the G-distributed function using Pade’s 

approximation and evaluate the bit error rate and 

outage probability performance of single user 

communication system using different modulation 

scheme. Our analysis starts from closed form 

expression for composite pdf and then, we solved it 

for moment generating function. Finally by using the 

relation between outage probability and moment 

generating function and bit error rate and moment 

generating function we analyzed the outage 

probability and bit error rate in terms of average 

SNR. 

The remainder of this paper, in Section II, presents 

some basic about Pade’s approximation and its 

property. In Section III, present the G-distribution. In 

Section IV derive the MGF function, Section V 

derives the outage probability function and its 

calculation, Section IV derives the amount of fading 

parameter. In Section VII we derive the Bit error 

probability for different modulation scheme. Section 

VIII provides some numerical results to illustrate the 

results of Pade’s approximated curve and analytical 

expression simulated curve. 

2. Pade Approximation (PA) 

To analyze the performance of wireless fading 

channel we always deal with different complicated 

mathematical function like infinite power series, 

exponential function, Bessel’s functions and Gamma 

functions etc., which are not easy to handle by 

simple mathematical approaches.  So we require an 

alternative approach to work with infinite power 

series functions. PA is a well known method that is 

used to approximate infinite power series that are 

either not guaranteed to converge, converge very 

slowly or for which a limited number of coefficients 

is known. The approximation is gives in terms of a 

simple rational function of arbitrary numerator and 

denominator orders [8]. Let g(s) be an unknown 

function given in terms of a power series in the 

variable 𝑠 ∈ ℂ, the set of complex numbers, namely 

[8]-[10] 

𝑔 𝑠 =  𝑐𝑛𝑠
𝑛

∞

𝑛=0

, 𝑐𝑛 ∈ ℝ 

 

where ℝ is the set of real number. There are several 

reasons to look for a rational approximation to a 

series, the series might be divergent or converging too 

slowly to be of any practical use. PA gives result in a 

transfer function form thus it can be used easily for 

any computation and one of the major reasons is that 

only few coefficients of the series may be known and 

that is why a good approximation is needed which  

represents the properties of the function. 

The one point PA of order  𝑁𝑝 𝑁𝑞  , 𝑃 𝑁𝑝 𝑁𝑞  (𝑠), is 

defined from the series g(s) as a rational function 

by[8] 

𝑃[𝑁𝑝/𝑁𝑞](𝑠)  =
 𝑎𝑛𝑠

𝑛𝑁𝑝
𝑛=0

 𝑏𝑛𝑠𝑛
𝑁𝑞
𝑛=0

 

Where the coefficients {an} and {bn} are defined such 

that [5] 

 𝑎𝑛𝑠
𝑛𝑁𝑝

𝑛=0

 𝑏𝑛𝑠𝑛
𝑁𝑞
𝑛=0

=  𝑐𝑛𝑠
𝑛

∞

𝑛=0

+ 𝒪(𝑠𝑁𝑝+𝑁𝑞+1) 

Where 𝒪(𝑠𝑁𝑝+𝑁𝑞+1)  representing the term of order 

higher than  𝑁𝑝 𝑁𝑞 . It is straightforward to see that 

the coefficients {an} and {bn} can be easily obtained 

by matching the coefficients of like powers on both 

sides of above equation. Specifically, taking b0=1, 

without loss of generality, one can find that the values 

of all coefficients [8]. 
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3. The G- distribution 

 

The probability density function of the composite 

multipath/shadowing channel is given by [4] 

𝑓𝑋 𝑥 =  𝑓𝑋 𝑌  𝑥 𝑌 = 𝑦 𝑓𝑌 𝑦 𝑑𝑦,

+∞

0

           (1) 

where 𝑓𝑋 𝑌  is the Nakagami-m multipath fading 

distribution and it is given by 

𝑓𝑋 𝑌  𝑥 𝑌 = 𝑦 =
2𝑚𝑚 𝑥2𝑚−1exp ⁡(

−𝑚𝑥 2

𝑦
)

Γ(𝑚)𝑦𝑚
,     𝑥 > 0      

(2) 

And 𝑓𝑌(𝑦)  is the inverse- Gaussian (IG) 

distribution which is given by 

𝑓𝑌 𝑦 =  
𝜆

2𝜋
  𝑦−

3
2 exp −

𝜆 𝑦 − 𝜃 2

2𝜃2𝑦
 ,     𝑦

> 0,           (3) 

On substituting (2) and (3) in (1) the closed form 

of composite envelope is expressed as follows 

𝒇𝑿 𝒙 =  
𝝀

𝜽𝟐
 
𝒎+

𝟏
𝟐
 
𝝀

𝟐𝝅
 
𝟒𝒎𝒎𝒙𝟐𝒎−𝟏 𝒆𝒙𝒑  

𝝀
𝜽
 

𝜞 𝒎   𝒈 𝒙  
𝒎+

𝟏
𝟐

 𝜥
𝒎+

𝟏
𝟐

   𝒈 𝒙  ,      (4)   

Where 𝑔 𝑥 =
2𝜆

𝜃2  𝑚𝑥
2 +

𝜆

2
   and  Κ𝑣   ⦁  is the 

modified Bessel function of the second kind of 

order   𝑣  . At 𝑚 = 1 , this distribution reduces to 

the Rayleigh-Inverse Gaussian. 

The probability density function of the 

instantaneous composite signal to noise power 

ratio 𝑓𝛾 𝛾  can be easily deduced from (4) as 

𝑓𝛾 𝛾 

= 𝐴
𝛾𝑚−1

  𝛼 + 𝛽𝛾 
𝑚+

1
2

  Κ
𝑚+

1
2

  𝑏 𝛼 + 𝛽𝛾  ,      (5) 

Where the following constant have been used: 

𝐴 =
 𝜆𝛾  

1+2𝑚
4

Γ 𝑚 
 

2𝜆

𝜋𝜃
 exp  

𝜆

𝜃
  

𝑚

𝛾 
 
𝑚

                 

  𝑏 =
1

𝜃
 
𝜆

𝛾 
   , 

𝛼 = 𝜆𝛾 ,   𝛽 = 2𝑚𝜃 

From [4], =
𝜸 

𝐸[𝑥2]
𝑥2  , where  𝛾  represents 

instantaneous SNR, 𝛾  represents average SNR, 

Ε[∗ ⦁] is the expectation operator. 

4.Moment generating function 

In probability theory and statistics, the MGF of 

any random variable is an alternative definition of 

its probability distribution. Thus, it provides the 

basis of an alternative route to analytical results 

compared with working directly with probability 

density functions or cumulative distribution 

functions. There are particularly simple results for 

the moment-generating functions of distributions 

defined by the weighted sums of random 

variables. The moment-generating function does 

not always exist even for real-valued arguments, 

unlike the characteristic function. There are 

relations between the behavior of the moment-

generating function of a distribution and properties 

of the distribution, such as the existence of 

moments. Thus, MGF is nothing but the Laplace 

transform of the PDF with argument reversed in 

sign. 

The MGF of an CRV, 𝛾 > 0 is defined as [8,11] 

ℳ𝛾 𝑠 = Ε 𝑒−𝑠𝛾 =  𝑒−𝑠𝛾𝑓𝛾 𝛾 𝑑𝛾  
∞

0

,               (6) 
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Where Mγ 𝑠⦁  is the moment generating function 

and 𝑓𝛾(𝛾)  is the probability density function 

(PDF) of 𝛾. Using the Taylor series expansion 

of  𝑒−𝑠𝛾  the MGF can be expressed as [5] 

ℳ𝛾 𝑠 ==  
 −1 𝑛

𝑛!

∞

𝑛=0

 Ε 𝛾𝑛  𝑠𝑛    ,   (7) 

For composite PDF the nth moment is given by 

eq. (8) and on using the power series expansion 

for Bessel function [12,eq.(8.468)] 

𝚬 𝜸𝒏 =  
𝟐𝝀

𝝅𝜽
   𝐞

𝝀
𝜽   

𝜸 

𝒎
 
𝒎

  
𝚪 𝒎 + 𝒏 

𝚪 𝒎 
𝚱
𝒏−

𝟏
𝟐

  
𝝀

𝜽
    ,            (8) 

𝚱
𝒏−

𝟏
𝟐

  
𝝀

𝜽
 =  

𝝅𝜽

𝟐𝝀
   𝐞−

𝝀
𝜽  

 𝐧 + 𝐤− 𝟏 !

𝐤!  𝐧 − 𝚱
𝒏−

𝟏
𝟐

  
𝝀
𝜽
 = 𝐤 − 𝟏 !  

𝟐𝝀
𝜽
 
𝐤

𝐧−𝟏

𝐤=𝟎

   , (9) 

On substituting (8) and (9) in (7), the moment 

generating function for specific number of 

numerator and denominator order is given by 

𝓜𝜸 𝒔        =

  
 −𝟏 𝒏

𝐧!
 
𝜸 

𝒎
 
𝒎

 
𝚪 𝒎+𝒏 

𝚪 𝒎 
  

 𝐧+𝐤−𝟏 !

𝐤! 𝐧−𝐤−𝟏 ! 
𝟐𝝀

𝜽
 
𝐤  𝒔𝒏𝐧−𝟏

𝐤=𝟎  
𝑵𝒑+𝑵𝒒+𝟏

𝒏=𝟎  ,   

(10) 

On solving, the PA for frequent heavy 

shadowing at 𝑚 = 2 is found to be  

𝑷 𝟑 𝟒   𝒔,𝒎, 𝜸  

=
𝟏 + 𝟏𝟒. 𝟗𝟑 𝜸 𝑺 + 𝟕𝟒. 𝟓𝟏 𝜸 𝟐𝑺𝟐 + 𝟏𝟒𝟑. 𝟐𝟑 𝜸 𝟑𝑺𝟑

𝟏 + 𝟏. 𝟐𝟖𝜸 𝑺 + 𝟑. 𝟗𝟎 𝜸 𝟐𝑺𝟐 + 𝟓. 𝟏𝟓𝟏 𝜸 𝟑𝑺𝟑 + 𝟑. 𝟗𝟒 𝜸 𝟒𝑺𝟒
 

5. Bit Error Rate 

 

Bit error rate or bit error probability (BEP) is 

an important performance analysis 

measurement of any digital communication 

system. Compute of bit error rate for any 

system is very difficult as compare to other 

parameter. BEP is one of the most relevant 

method to show about the nature of any 

system [13]. Moment generating function 

plays a key role for evaluating the average 

BEP for several modulation schemes. For 

differently coherent detection of binary phase 

shift keying (DPSK) and noncoherent 

frequency shift keying (FSK), the average 

BEP is given as [13]. 

𝑃𝑏 𝐸 = 𝐶1𝑀𝛾 𝑎1  

Where M ⦁   is moment generating function and 

𝑐1and 𝑎1 are constant depend on the modulation 

scheme 

𝑃 4 5   𝑠,𝑚, 𝛾  =
𝟏 + 𝟏𝟒. 𝟗𝟑 𝜸 𝑺 + 𝟕𝟒. 𝟓𝟏 𝜸 𝟐𝑺

𝟐
+ 𝟏𝟒𝟑. 𝟐𝟑 𝜸 𝟑𝑺

𝟑

𝟏 + 𝟏. 𝟐𝟖𝜸 𝑺 + 𝟑. 𝟗𝟎 𝜸 𝟐𝑺
𝟐

+ 𝟓. 𝟏𝟓𝟏 𝜸 𝟑𝑺
𝟑

+ 𝟑. 𝟗𝟒 𝜸 𝟒𝑺
𝟒 

After putting the value of s=𝑎1 

𝑃𝑏(𝐸)𝐶1  
𝟏 + 𝟏𝟒. 𝟗𝟑 𝜸 𝒂𝟏 + 𝟕𝟒. 𝟓𝟏 𝜸 𝟐𝒂𝟏

𝟐
+ 𝟏𝟒𝟑. 𝟐𝟑 𝜸 𝟑𝒂𝟏

𝟑

𝟏 + 𝟏. 𝟐𝟖𝜸 𝒂𝟏 + 𝟑. 𝟗𝟎 𝜸 𝟐𝒂𝟏
𝟐

+ 𝟓. 𝟏𝟓𝟏 𝜸 𝟑𝒂𝟏
𝟑

+ 𝟑. 𝟗𝟒 𝜸 𝟒𝒂𝟏
𝟒  

 

Where 𝐶1=1/2 and 𝑎1=1 for coherent DPSK and 

𝐶1 =
1

2
 and 𝑎1=1/2 for noncoherent FSK. 

 

6. Results and discussion 

Figure 1 show the curve between bit error 

probability and average SNR for different 

modulaton scheme for the fading parameter value 

m=2. From this graph we conclude that in 

noncoherent modulation bit error rate is less as 

compare to DPSK for higher value of average 

SNR. So as we move for the higher value of 

average SNR noncoherent modulation is better 

scheme as compare to DPSK. 
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Fig. 1. Average bit error probability for DPSK and 

noncoherent FSK for m=2 (λ=16.16 and θ=9.22) 

 

 

Fig. 2. Average bit error probability for DPSK and 

noncoherent FSK for m=3 (λ=16.16 and θ=9.22) 

 

 

Fig. 3. Average bit error probability for DPSK and 

noncoherent FSK for m=7( λ=16.16 and θ=9.22) 

 

Fig. 4. Average bit error probability for DPSK and 

noncoherent FSK for different m(m=2,3,7) (λ=16.16 

and θ=9.22) 

 

Fig. 5. Average bit error probability for DPSK and 

noncoherent FSK for m=2 (λ=25.16 and θ=7.22) 
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Fig. 6. Average bit error probability for DPSK and 

noncoherent FSK for m=3 (λ=25.16 and θ=7.22) 

 

Fig. 7. Average bit error probability for DPSK and 

noncoherent FSK for m=7 (λ=25.16 and θ=7.22) 

 

 

Fig. 9. Average bit error probability for DPSK and 

noncoherent FSK for m=2 for different shadowing  

parameter (λ=25.16 and θ=7.22) and  (λ=16.16 and 

θ=9.22

Fig. 8. Average bit error probability for DPSK and noncoherent 

FSK for different m(m=2,3,7) (λ=25.16 and θ=7.22) 

 

7. CONCLUSION 

From all the figure we conclude that as we 

increase the fading parameter the value of bit 

error probability is also increase. In the case of  

shadowing parameter value (λ=16.161 and 

θ=9.22) for m=2, bit error probability is 10
-6

 

whereas for the value of m=3 bit error 

probability value is 10
-4

.  After analyzing of all 

the plot we also conclude that Noncoherent FSK 

modulation scheme is better than DPSK 

modulation scheme for the higher value of 

average SNR because as we increases the value 

of average SNR the bit error rate is rapidly 

reduces in case of noncoherent FSK scheme as 

compare to DPSK modulation scheme. For the 

Lower value of average SNR DPSK modulation 

scheme is better but at a certain value of 

Average SNR, bit error probability in case of 

DPSK and Noncoherent FSK is same and after 
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that certain value Performance of bit error rate in 

case of  noncoherent FSK is better.  
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