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Abstract-Dynamic analysis of the laminated composite 

skew plates with all edges clamped subjected to 

uniform step loading is presented in this work. The 
displacement field assumed is in accordance with the 

HSDT. The skew plate in physical domain is 

transformed into square plate in computational 

domain. Finite Double Chebyshev polynomial and 

Houbolt time marching scheme has been employed 

for spatial and temporal discretezitation respectively. 
 

I.  Introduction 

        Composite structures are extensively used in 

aerospace and marine industries due totheir high 

strength-to-weight ratio. For the reliable and 

efficient design, it is necessary toevaluate the 

dynamic response of the composite structures. 

There are other plate geometriesother than 

rectangular plates such as skew plates that are used 

in many engineeringapplications such as aircraft 

wings, intersection elements in bridges and 

highways and manymore. Vibration analysis of the 

rectangular plates has been investigated widely in 

the 

literature whereas skew plates have received 

relatively less interest and in case of laminated 

composite plates, they received still little attention. 

        For the isotropic skew plates, linear 

dimensionless amplitude-frequency plot and 

modeshapes have been obtained by Das et. al.[1] 

by using variational method. Zhou and Zheng 

[2]have adopted Moving Least Square (MLS)-Ritz 

method for obtaining natural frequencies and 

mode shapes. 3-D vibration analysis has been done 

by Zhou et. al.[3] using Chebyshev-Ritzmethod for 

obtaining the natural frequencies and mode shapes. 

Whereas non-linear semi-analytical analysis has 

been done by Shufrin et. al.[4] to get displacement 

response of 

trapezoidal plate using multi-term extended 

Kantorovich method. For the case of 

compositelaminates, Ashour [5] has studied free 

vibration of symmetric angle-ply by using finite 

striptransition matrix method. Free vibration of 

orthotropic skew plates is analyzed by Farag and 

Ashour [6] by conjunction of Kantorovich method 

and the transition matrix to develop a new 

modification of the finite strip method. An 

analytical-numerical approach has been developed 

by Nallim and Oller [7] for non-linear analysis of 

arbitrarily laminated composites using Ritz 

method. Also Singha et. al.[8] have studied 

thermally stressed composite skew plates by using 

Finite Element Method (FEM) which considers in-

plane and rotary inertia in calculating frequency 

and mode shapes under thermal loading. Linear 

static and dynamic behavior of thin fibre reinforced 

laminates with different shapes has been obtained 

by Nallim et. al.[9] whereas non-linear analysis has 

been done by Anlas and Goker [10]. They used 

Ritz method for calculating natural frequencies. 

Also Differential Quadrature Method has been 

employedby Karami et. al.[11] to study the 

vibration parameters of skewed and trapezoidal 

laminates. Linear and non-linear dynamic 

responses under the uniform load as well as patch 

load havebeen studied by Tanveer and Singh [12]. 

Krishnan and Deshpande [13] studied thin 

cantilevered isotropic skew plates, lamina and 

laminates using discrete Kirchoff theory. 

Hosokawa et. al.[14] analyzed free vibration of a 

fully clamped symmetrically laminated skewplate 

using Green Function Approach and studied the 

effects of skew angle and the fiber orientation 

angle on natural frequency and mode shape. Han 

and Dickinson [15] extended the Ritz approach to 

symmetrically laminated skew plates to obtain the 

influence of different lamination lay-ups, skew 

angles and edge conditions on the natural 

frequency and nodal patterns. Non-dimensional 

frequency parameters for arbitrary lay-ups, skew 

angles and boundary conditions are obtained by 

Wang using B-spline Rayleigh-Ritz method for 

free vibration analysis of thin skew fibre reinforced 

composite laminates. Woo et. al.[16] have 

investigated skew mindlin plates with and without 

cutouts by p-version FEM using integrals of 

Legendre polynomial formulates the hierarchical 

mailto:civil.mahdi.hosseini@gmail.com
mailto:aminyellow2005@yahoo.co


  IJLTEMAS            VOLUME I ISSUE VII                     2ICAE-2012 GOA 

 

70 

 

plate element including rotator inertia effects. In 

above research most of the authors have obtained 

dynamic response interms of natural frequencies 

and mode shapes. Also these results are obtained 

by using numerical methods such as FEM, DQM 

etc. 

In the present analysis analytical solution 
for laminated composite skew plates hasbeen 

obtained. The displacement field is based on 

HSDT. Finite double Chebyshev Series and 

Houbolt’s method has been employed for spatial 

and temporal discretization. 

Convergence behavior of skew composite plate has 

been studied in detail. The effect of skew 

angle, boundary conditions, span to thickness ratio, 

plate aspect ratio and lamination scheme 

on the non-dimensional deflection has been 

presented. 

 
II. Theoretical formulation 

      Assuming perfect bonding between the layers, 

the displacement field at a point can be expressed 

as; 

         (1) 

Where, the parameters u0, v0 and w0 are the in-

plane and transverse displacements of a point(x, y) 

on the middle plane of the plate, respectively. The 

functions  and  are rotations of the normal to 

the middle plane about y and x axes, respectively. 

The parameters u1, v1, Φx and Φy are the higher 

order terms representing higher-order transverse 

cross-sectional deformation modes. Governing 

differential equations of motion are obtained using 

Hamilton’s principle and are expressed in non-

dimensional compact form as; 

 
                   (2) 

 

 
Where, Q is non-dimensional transverse load. Bar sign is 

omitted now onwards for simplicity. 

 
A. Transformation of physical domain in to 

computational domain: 
Co-ordinates of computational domain (X-Y) can be find 

out by the following method. 
 

W

here, x1 and x 2 are the lower and upper limits of x and 

y1 and y 2 are the lower and upper limits of y. These 

limits are either the constant numerical values (as in the 

case of a rectangular plate) or the functions of y ( x1 = f1 

( y ) and x 2 = f 2 ( y ) ) and the functions of x 
The upper and lower limits of x and y can be find out in 

the following way 

 

 
Figure 1. Upper and lower limits of x and y (   ,  , ,  ). 

 

From the above shown values of upper and lower 

limits of x and y in fig 1 we can find out the values 

of X and Y by putting these values in above 

equation as shown below. 

 
 
Where, ϴ is the skew angle. 

The derivatives can be obtained using the chain 

rule of differentiation. 

 
III. Solution methodology 

The displacement functions (x, y, t) and the loadings 

are approximated in space domain and expressed as (Fox 

and Parker, [17]): 
 

 
Where, M and N are the number of terms in finite 

degree double Chebyshev series 

and, Ti (X) , Tj (Y) are the Chebyshev 

polynomials. 
 
The spatial derivatives of the function for e.g.  (x, 

y, t) are expressed as; 

(3) 
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               (4) 

The derivative function is evaluated, using 

the recurrence relations; 

 
Implicit Houbolt time-marching method is used to 

evaluate the acceleration 

terms. At time step J the general acceleration term 

is evaluated as (Houbolt [18]); 

 

The initial conditions are at; J=0,   

The values of the coefficients (βk; k = 1, 2...5) in 

equation (7) for the different loadings can be 

obtained using the initial conditions. Similarly the 

boundary conditions are also discreticized and 

finally the set of equations along with boundary 

conditions are expressed in matrix form as: 

          Aa=Q            (8) 

Utilizing multiple regression analysis, the values of 

the displacement vector a is obtained and put into 

the equation (2) to evaluate the displacement at the 

desired location on the mid-plane of the plate. 

4.Results and Discussion 

        The properties laminate are E1/E2=25, 

ν12=0.25, G12=G13=0.5*E2, G23=0.2*E2. 

Following non dimensional quantities are used: 

Non dimensional load = qa /E2h ; Non dimensional 

deflection = w/h , τ = t (4A22/ β h I1) , β = 

a/h 

          The present solution methodology has been 

validated and is in good agreement with the 

available results. Some specific results are 

presented here. 

The spatial convergence for 450 and 600 laminated 

composite rhombic plate is shown in Table1. It is 

observed that 8 term expansion of Chebyshev 

series is sufficient to yield quite accurate results. In 

the present analysis M=N=8 has been used. The 

temporal convergence for 450 laminated composite 

rhombic plate is shown in Table 2. It is observed 

that quite good convergence behavior exist for non-

dimensional time step ∆τ=0.25 and lower values. In 

the present analysis ∆τ=0.25 has been used to 

obtain the results. The effect of skew angle on then 

on-dimensional deflection is shown in Figure 2. It 

is observed for high skew angles difference in 

amplitude is low. But this difference increases with 

decrease in skew angle. Also the decrease in time 

period is observed with the decrease in skew angle. 

 
Table 1. Spatial convergence for a laminated composite 

[0/90/90/0] skew composite [0/90/90/0] skew plate (a/h=10, 
a/b=1, plate (a/h=10, a/b=1, Q=50)Q=50) 

 

M=N 
Non dimensional defection 

Θ=60 Θ=45 

6 0.399 0.258 

7 0.398 0.259 

8 0.416 0.263 

9 0.414 0.264 

10 0.415 0.262 

 
 
 
 
 
 
 

Table 2. temporal convergence for a laminated composite 

[0/90/90/0]skew composite [0/90/90/0]skew plate (a/h=10, 
a/b=1, plate (a/h=10, a/b=1, Q=50)Q=50, Θ=450) 

 
Time step (ΔT) Non-dimensional 

Time 

Non-dimensional 

Deflection 

1 11 0.255 

0.75 10.5 0.259 

0.5 10.0 0.262 

0.25 9.5 0.263 

0.20 7.4 0.264 

 

 
Figure2. Effect of skew angle on the nom dimensional central 

deflection of skew plate 

 

IV. Conclusions 

An analytical solution is presented for dynamic 

analysis of laminated composite skew plate under 

uniform step load. The skew plate in physical 

domain is transformed into square computational 

domain by certain transformation. The spatial 

discretization is done with double Chebyshev 

polynomial due to its ability to converge the 

solution rapidly. Whereas for temporal 

discretization Houbolt time marching scheme is 

employed. A computer code has been developed in 

the FORTRAN. From the table it is clear that a 

good convergence is achieved. With the decrease in 

skew angle, a decrease in time period i.e. increase 

in frequency is observed. 
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