Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

TCP Algorithms and Properties to Avoid Congestion
Syed Nusrat®, Farman Ali?, Dr. Sachin Kumar®
Research Scholar® 2, Supervisor®
Shri JJT University™ 2

nusrat.syed@gmail.com’, raofarmanmca@gmail.com?, imsachingupta@rediffmail.com’

ABSTRACT

This paper is an exploratory survey of TCP congestion control princip
In addition to the standard algorithms used in common software implementations of
this paper also describes some of the more common proposa

There has been some serious discussion gi igl of a large-scale Internet
i *J17].So far the Internet has
throughout the years where serious
problems have disabled large . S0me of these incidents have been a
result of algorithms used o the Tramsmission Control Protocol (TCP) [19].

Others are a result of pr ecurity, or perhaps more accurately, the
lack thereof [24].
The popularity of the Internet haS¥gightened the need for more bandwidth throughout all

tiers of the . Home users”need more bandwidth than the traditional 64Kb/s
channel a ideg typically allows. Video, music, games, file sharing and
i e and more bandwidth to avoid the “World Wide Wait” as

oviders (ISPs) who provide the access to the average home customer
up as more and more users get connected to the information

Core bacKbone providers have had to ramp up their infrastructure to support the
increasing demand from their customers below.

Today it would be unusual to find someone in the U.S. that has not heard of the Internet,
let alone experienced it in one form or another. The Internet has become the fastest
growing technology of all time [8]. So far, the Internet is still chugging along, but a good
question to ask is “Will it continue to do so?” Although this paper does not attempt to
answer that question, it can help us to understand why it will or why it might not.

117 |Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

Good and bad network performance is largely dependent on the effective implementation
of network protocols. TCP, easily the most widely used protocol in the transport layer on

the Internet (e.g. HTTP, TELNET, and SMTP), plays an integral role in determining
overall network performance.

Amazingly, TCP has changed very little since its initial design in the ea ’s. A few
“tweaks” and ‘“knobs” have been added, but for the most part,
withstood the test of time. However, there are still a numbe

for a number of people [21].

Over the past few years, researchers have spent a gre
and additional mechanisms for TCP and related tec ies i of potential network
overload problems. Some techniques have been impl ; ft behind and still
others remain on the drawing board. We’ll begin ou [f TCP by trying to

This paper does not cover the basic elf, but rather the underlying
designs and techniques as they twork overload and congestion.
For a brief description on the hasi on paper is provided in [14].

The design of TCP was*heavil luenced by what has come to be known as the end-to-
end argument [18]. The key co t of the end-to-end argument for our purposes is
in its metho handling congestion and network overload. The premise of the argument
ign is that the end stations are responsible for controlling

model, there are no explicit signaling mechanisms in the

questions from implicit knowledge it obtains from the network or the
it receives from the other TCP host.

2.1 An Overvjew of TCP Flow Control

One of TCP’s primary functions is to properly match the transmission rate of the sender
to that of the receiver and the network. It is important for the transmission to be at a high
enough rate to ensure good performance, but also to protect against overwhelming the
network or receiving host.

TCP’s 16-bit window field is used by the receiver to tell the sender how many bytes of
data the receiver is willing to accept. Since the window field is limited to a maximum of

118 | Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

16 bits, this provides for a maximum window size of 65,535 bytes.

The window size advertised by the receiver tells the sender how much data, starting from
the current position in the TCP data byte stream can be sent without waiting for further
acknowledgements. As data is sent by the sender and then acknowledged by the receiver,
the window slides forward to cover more data in the byte stream. This concept is known
as a “sliding window” and is depicted in figure 1 below.

window

ool ane Mot et Sent
l windovy l ,
i alsiwis s lr e e a2
=

smitted by the sender. A receiver can adjust the window
ledgements to the sender. The maximum transmission rate
e receiver’s ability to accept and process data. However, this
plicit trust arrangement between the TCP sender and receiver. It
at aggressive or unfriendly TCP software implementations can take

As we will see shortly, the sender and also the network can play a part in determining the
transmission rate of data flow as well.

It is important to consider the limitation on the window size of 65,535 bytes. Consider a

typical internetwork that may have link speeds of up to 1 Gb/s or more. On a 1 Gb/s
network 125,000,000 bytes can be transmitted in one second. This means that if only two

119|Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

TCP stations are communicating on this link, at best 65,535/125,000,000 or only about
.0005 of the bandwidth will be used in each direction each second!

Recognizing the need for larger windows on high-speed networks, the Internet
Engineering Task Force released a standard for a “window scale option” defined in
RFC 1323 [12]. This standard effectively allows the window to increase from 16 to 32
bits or over 4 billion bytes of data in the window.*

2.2 Retransmissions, Timeouts and Duplicate Acknowledgements

TCP is relegated to rely mostly upon implicit signals it learns fromy'the network and

remote host. TCP must make an educated guess as to the state of the

seem like an awfully tricky problem, but in most cases TC
simple and straightforward way.

A sender’s implicit knowledge of network conditio
of a timer. For each TCP segment sent th

Whenever TCP trans
long it takes for an a

round-trip“time between two communicating TCP hosts. The round-trip time may vary
during the TCP connection as network traffic patterns fluctuate and as routes become
available or unavailable.

! A TCP option negotiated in the TCP connection establishment phase sets the number of bits by which the
window is right-shifted in order to increase the value of the window.

TCP keeps track of when data is sent and at what time acknowledgements covering those

120|Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

sent bytes are returned. TCP uses this information to calculate an estimate of round trip
time. As packets are sent and acknowledged, TCP adjusts its round-trip time estimate
and uses this information to come up with a reasonable timeout value for packets sent. If
acknowledgements return quickly, the round-trip time is short and the retransmission
timer is thus set to a lower value. This allows TCP to quickly retransmit data when
network response time is good, alleviating the need for a long delay between the
occasional lost segment. The converse is also true. TCP does not retransmit data too
quickly during times when network response time is long.

If a TCP data segment is Iost in the network, a receiver will never even it was once

In one case, |f an acknowledgement doesn’t return, the sender’s
timer expires which causes a retransmission of the segment. If however the sende
sent at least one additional segment after the one that was |
received correctly, the receiver does not send an acknowle
of order segment.

contiguous byte it has received in the byte stream prlo to In this case
the receiver will send an acknowledgem ontiguous byte it has
received. If that last contiguous byte was al , we call this a duplicate

ACK. The reception of duplicate A imphici he sender that a segment may

rithms noted within that document was actually designed
published [9], [11]. Their usefulness has passed the test of

3.1 Slow Start

Slow Start, a requirement for TCP software implementations is a mechanism used by the
sender to control the transmission rate, otherwise known as sender-based flow control.
This is accomplished through the return rate of acknowledgements from the receiver. In

other words, the rate of acknowledgements returned by the receiver determine the rate at
which the sender can transmit data.

121 |Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

When a TCP connection first begins, the Slow Start algorithm initializes a congestion
window to one segment, which is the maximum segment size (MSS) initialized by the
receiver during the connection establishment phase. = When acknowledgements are
returned by the receiver, the congestion window increases by one segment for each
acknowledgement returned. Thus, the sender can transmit the minimum of the
congestion window and the advertised window of the receiver, which is simply called the
transmission window.

Slow Start is actually not very slow when the network is not congeste and network
response time is good. For example the first successful I

so on, doubling from there on out up to the maximum wm
receiver or until congestion finally does occur.

At some point the congestion window may become netwaerk or network
conditions may change such that packets may be d . lost will trigger a
timeout at the sender. When this happens, the send i ngestion avoidance
mode as described in the next section.

3.2 Congestion Avoidance
During the initial data transfer ction the Slow Start algorithm is
tart that the network is forced to drop

If this happens, Congestion
rate. However, Slow Start is used in

one or more packets
Avoidance is used t

ize” (the minimum of the congestion window and the receiver’s
size), but to at least two segments. If congestion was indicated by a

As data is received during Congestion Avoidance, the congestion window is increased.
However, Slow Start is only used up to the halfway point where congestion originally

occurred. This halfway point was recorded earlier as the new transmission window.
After this halfway point, the congestion window is increased by one segment for all
segments in the transmission window that are acknowledged. This mechanism will force
the sender to more slowly grow its transmission rate, as it will approach the point where

122 |Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

congestion had previously been detected.
3.3 Fast Retransmit

When a duplicate ACK is received, the sender does not know if it is because a TCP
segment was lost or simply that a segment was delayed and received out of order at the
receiver. If the receiver can re-order segments, it should not be long before the receiver
sends the latest expected acknowledgement. Typically no more than one or two duplicate
ACKSs should be received when simple out of order conditions exist. If however more
than two duplicate ACKs are received by the sender, it is a strong indi at at least
one segment has been lost. The TCP sender will assume enough time has lapsed for all
segments to be properly re-ordered by the fact that the receiver had e
three duplicate ACKs.

When three or more duplicate ACKSs are received, the sende
retransmission timer to expire before retransmitting ed by the
position of the duplicate ACK in the byte strea i i lled the Fast
Retransmit algorithm and was first defined in [1
Retransmit is the Fast Recovery algorithm.

3.4 Fast Recovery

Since the Fast Retransmit algorit te ACKs are being received, the
TCP sender has implicit knowl i till flowing to the receiver. Why?
The reason is because dupli enerated when a segment is received.

Rather than st@rt at a window of op€ segment as in Slow Start mode, the sender resumes
transmissi indow, incrementing as if in Congestion Avoidance mode.
ut under the condition of only moderate congestion [23].

n of the paper, figure 2 below depicts what a typical TCP data
g TCP congestion control might look like. Notice the periods of
size increase, linear increase and drop-off. Each of these scenarios
depicts er’s response to implicit or explicit signals it receives about network
conditions.

Figure 2 Congestion Control Overview

123 |Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

transmission T
window
fitneout
exponential limear
increase increase
threshiold

time

4.0 Latest Techniques

Although RFC 2581 and its associated al g an excellent job in
ensuring top performance in lieu of cong ks, there are still a lot of
works going into enhancing TCP per iveness to congestion. During
the 1990°s researchers such as S cobson, Mark Allman, W. Richard
Stevens, Jamshid Mahdavi and producing a massive amount of
research and experiments wi estion control ideas. The wealth of
information in this area i it is hard to pick out some of the best
ideas to present in thi this section is an attempt to provide an
overview of some of%those lar ideas/over the last decade. TCP and congestion

that is still actively being researched. For more

retransmit the segment, which the sender assumes has been lost.
ible that between the time when the segment was initially sent and the
ransmission window expired, other segments in the window may have
been sent the lost segment. It is also possible that these later segments arrived at the
receiver ard are simply queued awaiting the missing segment so they can be properly re-
ordered. The receiver has no way of informing the sender that it has received other
segments because of the requirement to acknowledgement only the contiguous bytes it
has received. This case demonstrates a potential inefficiency in the way TCP handles the
occasional loss of segments.

Ideally, the sender should only retransmit the lost segment(s) while the receiver continues
to queue the later segments. This behavior was identified as a potential improvement in
TCP’s congestion control algorithms as early as 1988 [10]. It was only until recently

124 |Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

that a mechanism to retransmit just the lost segments in these situations was put into
standard TCP implementations [15], [16].

Selective Acknowledgement (or SACK) is this technique implemented as a TCP option
that can help reduce unnecessary retransmissions on the part of the sender. If the TCP
connection has negotiated the use of SACK (through the use of the TCP header option
fields), the receiver can offer feedback to the sender in the form of the selective
acknowledgement option. The receiver reports to the sender, which blocks of data have
arrived using the format show in figure 3 below.)

bt L} 1 2 3 4 5 [} r g Ll m 1" 12 12 " 1§ 16 s 18 1 an 21 2 ks 24 25 E ks 2 28 30 31

Kind=15 Length

Left Edge of 15t Block

Right Edge of 1st Block

Left Edge of nth Block

Right Edige of nth Block

This list of blocks in the SAC i der which contiguous byte stream
blocks it has received. At maxi blogks can be sent in one TCP segment

entation of BSD included the ability to do Slow Start, Congestion
Avoida Fast Recovery. Reno was the implementation of TCP that included the
Tahoe implementation plus the ability to do Fast Retransmit. NewReno is a slight
modification to the Reno implementation of TCP [7] that can improve performance
during Fast Recovery and Fast Retransmit mode.?

% The original names of Reno and Tahoe were derived from the names of BSD TCP/IP implementations.

The NewReno implementation only applies if SACK has not been negotiated in a
connection. From [7], an overview of the NewReno is as follows:

In the absence of SACK, there is little information available to the TCP sender in
125|Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

making retransmission decisions during Fast Recovery. From the three duplicate
acknowledgements, the sender infers a packet loss, and retransmits the indicated
packet.After this, the data sender could receive additional duplicate
acknowledgements, as the data receiver acknowledges additional data packets
that were already in flight when the sender entered Fast Retransmit.

In the case of multiple packets dropped from a single window of data, the first
new information available to the sender comes when the sender receives an
acknowledgement for the retransmitted packet (that is the packet retransmitted
when Fast Retransmit was first entered). Ifthere had been a si
then the acknowledgement for this packet will acknowledge

the retransmitted packet will acknowledge some
transmitted before the Fast Retransmit. We ¢
acknowledgment.

According to RFC 2582 above, the TCP send
acknowledgement that the indicated segment has bee imMediately retransmit
the segment.?

that have been performed on TCP
st briefly cover two of the most recent

n98] suggests increasing TCP’s initial window size
Kilobytes. By doing so, in certain situations it is believed
eing able to fill the “pipe” quicker.

nature of nsmission may be reduced. The intended affect is that by reducing the

® We use the term segment in place of packet as is used in RFC 2582 ,but essentially the meanings of the
two are the same for our purpose here.bursts in network traffic, periods of congestion and
eventual packet loss are also reduced. Its advantages and disadvantages are only
beginning to be understood [1]. However, a popular commercial product already
implements a technique similar to TCP pacing and is being installed in many large
organizations [Packeteer00].

4.4 Non-TCP Congestion Control Techniques

126 |Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

There are number of techniques which are worth our time to examine even though they
are not directly implemented within TCP software on end systems. These techniques can
indirectly affect TCP congestion control.

For example, whenever a router drops a packet, it in effect is providing a signal to the
TCP sender to slow down by causing a retransmission timer to expire. If routers could
use some advanced packet drop techniques, they may be able to better control network
congestion through the implicit signals TCP senders detect.

Also, there are non-technical designs that can affect network pefformance.
implementing a system where a cost is associated with network transmissi

may require. Both of these types of techniques are briefly exp

4.4.1 Random Early Detection

effect causes congestion control to
congestion event.

senders to slow down, a router
As network traffic increases and

Also briefly described in [4] and further expanded upon in [5], Explicit Congestion
Notification (ECN) is a technique that just marks packets instead of dropping them as
RED usually does. The idea behind implementing ECN instead of RED is to avoid
packet drops, particularly where the delay involved caused by retransmission needs to be
avoided. Good examples of cases where this delay should be avoided are with real-time
applications such as two-way voice communications or when using a terminal program
such as TELNET.

127 |Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

Routers can mark two bits in the IP Type of Service (ToS) header field to signal whether
or not congestion is occurring. TCP senders can then adjust their rate of transmission
appropriately if they see that these bits are set to indicate a network congestion condition
IS occurring.

4.4.3 Network Pricing

An entirely different category of congestion control is through the use of a network-

getting a speeding ticket on the highway.

5.0 Conclusion

traffic demands.

Now of great concern to a n ioners is the concept of “network

laying field for all participants, and to

It remains todde seen how far currept congestion control techniques can carry the Internet
inues. So far they have performed admirably.

ely Software Distribution

ECN xplicit Congestion Notification
Gbl/s Gibabits per second

HTTP HyperText Transfer Protocol
IETF Internet Engineering Task Force
IP Internet Protocol

ISP Internet Service Provider

Kb/s Kilobits per second

MSS Maximum Segment Size

RED Random Early Detection

128 |Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

RFC Request For Comments

RSVP Resource ReSerVation Protocol

SACK Selective ACKnowledgement

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol
ToS Type of Service

UDP User Datagram Protocol

References

[1] Amit Aggarwal, Stefan Savage, and Thomas Anderson
Performance of TCP Pacing, March 30, 2000, IEEE InfoCom 2000.

[2]M. Allman, V. Paxson, and W. Stevens. TCP Congesti
2581.

[3] B. Braden, D. Clark, J. Crowcroft, B. Davie,
Jacobson, G. Minshall, C. Patridge, L. Peterso

WrocLawski, and Lixia Zhang. Recommendationson
Congestion Avoidance in the Internet, April
[4]Sally Floyd and Van arly Detection Gateways for

Congestion Avoidance. IEEE/AC i etworking, August 1993.

[5]Sally Floyd. TCP
Communications Review,

[6]Sally Floyd and K
in Internet. IEEE/ACM Transa s on Networking, August 1999.

Congestion Avoidance and Control. Computer Communications

Review, 18 number 4, pp. 314-329, August 1988.

[10] V. Jacobson and R. Braden. TCP Extensions for Long-Delay Paths, October 1988,
RFC 1072.

[11] Van Jacobson. Modified TCP Congestion Control Avoidance Algorithm. End-
2-end-interest mailing list, April 30, 1990.

[12] V. Jacobson, R. Braden and D. Borman. TCP Extensions for High Performance, May
1992, RFC 1323.

129 |Page www.ijltemas.in

Volume Il Issue |, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

[13]Scott Jordan. Pricing and Differentiated Services in Internet and ATM,
http://www.eng.uci.edu/~sjordan/pubs/Pricing/index.htm, March 11, 1999.

[14]John Kristoff. The Transmission Control Protocol, March 2000.

[15] Jamshid Mahdavi. Private e-mail to John Kristoff, December 12, 1999.

[16]M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP_Selective
Acknowledgement Options, October 1996, RFC 2018.

[17] Bob Metcalfe. From the Ether. InfoWorld, December 4,

Proceedings SIGCOMM ‘88, Computer Com REVI ol. 18, No. 4,
August 1988, pp. 106-114).

[19] Jon Postel. Transmission Control Prot

[20]Stefan Savage, Neal Cardwel

Review, October 1999.

[21]Jeffrey Semke, Jamshi ew Mathis. Automatic TCP Buffer
Tuning, Computer Co i CM SIGCOMM, Volume 28, Number 4,
October 1998.

130|Page www.ijltemas.in

http://www.eng.uci.edu/~sjordan/pubs/Pricing/index.htm

