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   ABSTRACT 

This paper is an exploratory survey of TCP congestion control principles and techniques. 

In addition to the standard algorithms used in common software implementations of TCP, 

this paper also describes some of the more common proposals developed by researchers 

over the years.  By studying congestion control techniques used in TCP implementation 

software and network hardware we can better comprehend the performance issues of 

packet switched networks and in particular, the public Internet. 

 

1 Introduction 
 

 

There has been some serious discussion given to the potential of a large-scale Internet 

collapse due to network overload or congestion [6], [17].So far the Internet has 

survived, but there has been a number of incidents throughout the years where serious 

problems have disabled large parts of the network.  Some of these incidents have been a 

result of algorithms used or not used in the Transmission Control Protocol (TCP) [19]. 

Others are a result of problems in areas such as security, or perhaps more accurately, the 

lack thereof [24]. 

 
The popularity of the Internet has heightened the need for more bandwidth throughout all 

tiers of the network.   Home users need more bandwidth than the traditional 64Kb/s 

channel a telephone provider typically allows.   Video, music, games, file sharing and 

browsing the web requires more and more bandwidth to avoid the “World Wide Wait” as 

it has come to be known by those with slower and often heavily congested connections. 

 
Internet Service Providers (ISPs) who provide the access to the average home customer 

have had to keep up as more and more users get connected to the information 

superhighway. 

 
Core  backbone  providers  have  had  to  ramp  up  their  infrastructure  to  support  the 

increasing demand from their customers below. 

 
Today it would be unusual to find someone in the U.S. that has not heard of the Internet, 

let alone experienced it in one form or another.   The Internet has become the fastest 

growing technology of all time [8].  So far, the Internet is still chugging along, but a good 

question to ask is “Will it continue to do so?”  Although this paper does not attempt to 

answer that question, it can help us to understand why it will or why it might not. 
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Good and bad network performance is largely dependent on the effective implementation 

of network protocols.  TCP, easily the most widely used protocol in the transport layer on 

the Internet (e.g. HTTP, TELNET, and SMTP), plays an integral role in determining 

overall network performance. 

 
Amazingly, TCP has changed very little since its initial design in the early 1980‟s.  A few 

“tweaks” and “knobs” have been added, but for the most part, the protocol has 

withstood the test of time.   However, there are still a number of performance 

problems on the Internet and fine tuning TCP software continues to be an area of work 

for a number of people [21]. 

 

Over the past few years, researchers have spent a great deal of effort exploring alternative 

and additional mechanisms for TCP and related technologies in lieu of potential network 

overload problems.  Some techniques have been implemented; others left behind and still 

others remain on the drawing board.  We‟ll begin our examination of TCP by trying to 

understand the underlying design concepts that have made it so successful. 

 

This paper does not cover the basics of the TCP protocol itself, but rather the underlying 

designs and techniques as they apply to problems of network overload and congestion. 

For a brief description on the basics of TCP, a companion paper is provided in [14]. 

 
2 The End-to-End Argument 

 

 

The design of TCP was heavily influenced by what has come to be known as the end-to- 

end argument [18].  The key component of the end-to-end argument for our purposes is 

in its method of handling congestion and network overload. The premise of the argument 

and fundamental to TCP‟s design is that the end stations are responsible for controlling 

the rate of data flow.  In this model, there are no explicit signaling mechanisms in the 

network which tell the end stations how fast to transmit, when to transmit, when to speed 

up or when to slow down.  The TCP software in each of the end stations is responsible 

for answering these questions from implicit knowledge it obtains from the network or the 

explicit knowledge it receives from the other TCP host. 

 
2.1 An Overview of TCP Flow Control 

One of TCP‟s primary functions is to properly match the transmission rate of the sender 

to that of the receiver and the network.  It is important for the transmission to be at a high 

enough rate to ensure good performance, but also to protect against overwhelming the 

network or receiving host. 

 
TCP‟s 16-bit window field is used by the receiver to tell the sender how many bytes of 

data the receiver is willing to accept. Since the window field is limited to a maximum of 
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16 bits, this provides for a maximum window size of 65,535 bytes. 

 

The window size advertised by the receiver tells the sender how much data, starting from 

the current position in the TCP data byte stream can be sent without waiting for further 

acknowledgements. As data is sent by the sender and then acknowledged by the receiver, 

the window slides forward to cover more data in the byte stream.  This concept is known 

as a “sliding window” and is depicted in figure 1 below. 

 
 

 

Figure 1  Sliding Window 
 

 

As shown above, data within the window boundary is eligible to be sent by the sender. 

Those bytes in the stream prior to the window have already been sent and acknowledged. 

Bytes ahead of the window have not been sent and must wait for the window to “slide” 

forward before they can be transmitted by the sender.  A receiver can adjust the window 

size each time it sends acknowledgements to the sender.  The maximum transmission rate 

is ultimately bound by the receiver‟s ability to accept and process data.  However, this 

technique implies an implicit trust arrangement between the TCP sender and receiver.  It 

has been shown that aggressive or unfriendly TCP software implementations can take 

advantage of this trust relationship to unfairly increase the transmission rate or even to 

intentionally cause network overload situations [20]. 

 
As we will see shortly, the sender and also the network can play a part in determining the 

transmission rate of data flow as well. 

 
It is important to consider the limitation on the window size of 65,535 bytes.  Consider a 

typical internetwork that may have link speeds of up to 1 Gb/s or more.  On a 1 Gb/s 

network 125,000,000 bytes can be transmitted in one second. This means that if only two 
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TCP stations are communicating on this link, at best 65,535/125,000,000 or only about 

.0005 of the bandwidth will be used in each direction each second! 

 

Recognizing  the  need  for  larger  windows  on  high-speed  networks,  the  Internet 

Engineering Task Force released a standard for a “window scale option” defined in 

RFC 1323 [12].  This standard effectively allows the window to increase from 16 to 32 

bits or over 4 billion bytes of data in the window.1 

 
2.2 Retransmissions, Timeouts and Duplicate Acknowledgements 

 

 

TCP is relegated to rely mostly upon implicit signals it learns from the network and 

remote host.  TCP must make an educated guess as to the state of the network and trust 

the information from the remote host in order to control the rate of data flow.  This may 

seem like an awfully tricky problem, but in most cases TCP handles it in a seemingly 

simple and straightforward way. 

 
A sender‟s implicit knowledge of network conditions may be achieved through the use 

of a timer.  For each TCP segment sent the sender expects to receive an 

acknowledgement within some period of time otherwise an error in the form of a timer 

expiring signals that that something is wrong. 

 
Somewhere in the end-to-end path of a TCP connection a segment can be lost along the 

way.  Often this is due to congestion in network routers where excess packets must be 

dropped.  TCP not only must correct for this situation, but it can also learn something 

about network conditions from it. 

 
Whenever TCP transmits a segment the sender starts a timer which keeps track of how 

long it takes for an acknowledgment for that segment to return.  This timer is known as 

the retransmission timer.   If an acknowledgement is returned before the timer expires, 

which  by  default  is  often  initialized  to  1.5  seconds,  the  timer  is  reset  with  no 

consequence.  If however an acknowledgement for the segment does not return within the 

timeout period, the sender would retransmit the segment and double the retransmission 

timer value for each consecutive timeout up to a maximum of about 64 seconds [22].  If 

there are serious network problems, segments may take a few minutes to be successfully 

transmitted before the sender eventually times out and generates an error to the sending 

application. 

 
Fundamental to the timeout and retransmission strategy of TCP is the measurement of the 

round-trip time between two communicating TCP hosts.  The round-trip time may vary 

during the TCP connection as network traffic patterns fluctuate and as routes become 

available or unavailable. 
 
 

 
1 A TCP option negotiated in the TCP connection establishment phase sets the number of bits by which the 

window is right-shifted in order to increase the value of the window. 

TCP keeps track of when data is sent and at what time acknowledgements covering those 
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sent bytes are returned.  TCP uses this information to calculate an estimate of round trip 

time.  As packets are sent and acknowledged, TCP adjusts its round-trip time estimate 

and uses this information to come up with a reasonable timeout value for packets sent.  If 

acknowledgements return quickly, the round-trip time is short and the retransmission 

timer is thus set to a lower value.   This allows TCP to quickly retransmit data when 

network response time is good, alleviating the need for a long delay between the 

occasional lost segment.   The converse is also true.   TCP does not retransmit data too 

quickly during times when network response time is long. 

 
If a TCP data segment is lost in the network, a receiver will never even know it was once 

sent.  However, the sender is waiting for an acknowledgement for that segment to return. 

In one case, if an acknowledgement doesn‟t retur n, the sender‟s ret ransmiss io n  

timer expires which causes a retransmission of the segment.  If however the sender had 

sent at least one additional segment after the one that was lost and that later segment is 

received correctly, the receiver does not send an acknowledgement for the later, out  

of order segment. 

 
The receiver cannot acknowledgement out of order data; it must acknowledge the last 

contiguous byte it has received in the byte stream prior to the lost segment.  In this case, 

the receiver will send an acknowledgement indicating the last contiguous byte it has 

received.  If that last contiguous byte was already acknowledged, we call this a duplicate 

ACK.  The reception of duplicate ACKs can implicitly tell the sender that a segment may 

have been lost or delayed.  The sender knows this because the receiver only generates a 

duplicate ACK when it receives other, out of order segments.  In fact, the Fast Retransmit 

algorithm  described   later   uses   duplicate  ACKs   as  a   way  of   speeding  up   the 

retransmission process. 

 
3.0 Standard TCP Congestion Control  Algorithms 

 

 

The standard fare in TCP implementations today can be found in RFC 2581 [2].  This 

reference document specifies four standard congestion control algorithms that are now in 

common use.  Each of the algorithms noted within that document was actually designed 

long before the standard was published [9], [11].  Their usefulness has passed the test of 

time. 

 
The  four  algorithms,  Slow  Start,  Congestion  Avoidance,  Fast  Retransmit  and  Fast 

Recovery is described below. 
 

 

3.1 Slow Start 
 

 

Slow Start, a requirement for TCP software implementations is a mechanism used by the 

sender to control the transmission rate, otherwise known as sender-based flow control. 

This is accomplished through the return rate of acknowledgements from the receiver.  In 

other words, the rate of acknowledgements returned by the receiver determine the rate at 

which the sender can transmit data. 
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When a TCP connection first begins, the Slow Start algorithm initializes a congestion 

window to one segment, which is the maximum segment size (MSS) initialized by the 

receiver during the connection establishment phase.   When acknowledgements are 

returned by the receiver, the congestion window increases by one segment for each 

acknowledgement returned.     Thus, the sender  can transmit t he  minimum of t he  

congestion window and the advertised window of the receiver, which is simply called the 

transmission window. 

 
Slow Start is actually not very slow when the network is not congested and network 

response time is good. For example, the first successful transmission and 

acknowledgement of a TCP segment increases the window to two segments. After 

successful transmission of these two segments and acknowledgements completes, the 

window is increased to four segments.  Then eight segments, then sixteen segments and 

so on, doubling from there on out up to the maximum window size advertised by the 

receiver or until congestion finally does occur. 

 
At some point the congestion window may become too large for the network or network 

conditions may change such that packets may be dropped.   Packets lost will trigger a 

timeout at the sender.   When this happens, the sender goes into congestion avoidance 

mode as described in the next section. 

 
3.2 Congestion Avoidance 

 

 

During the initial data transfer phase of a TCP connection the Slow Start algorithm is 

used.  However, there may be a point during Slow Start that the network is forced to drop 

one or more packets due to overload or congestion.   If this happens, Congestion 

Avoidance  is used  to  slow  the  transmission  rate.    However,  Slow  Start  is  used  in 

conjunction with Congestion Avoidance as the means to get the data transfer going again 

so it doesn‟t slow down and stay slow. 

 
 
In the Congestion Avoidance algorithm a retransmission timer expiring or the reception 

of duplicate ACKs can implicitly signal the sender that a network congestion situation is 

occurring.   The sender immediately sets  its transmission window to one half of the 

current  window  size  (the  minimum  of  the  congestion  window  and  the  receiver‟s 

advertised window size), but to at least two segments.  If congestion was indicated by a 

timeout, the congestion window is reset to one segment, which automatically puts the 

sender into Slow Start mode.  If congestion was indicated by duplicate ACKs, the Fast 

Retransmit and Fast Recovery algorithms are invoked (see below). 

 
As data is received during Congestion Avoidance, the congestion window is increased. 

However, Slow Start is only used up to the halfway point where congestion originally 

occurred. This halfway point  was recorded earlier  as the new transmission window. 

After this halfway point, the congestion window is increased by one segment for all 

segments in the transmission window that are acknowledged.  This mechanism will force 

the sender to more slowly grow its transmission rate, as it will approach the point where 
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congestion had previously been detected. 

 
3.3 Fast Retransmit 

 

 

When a duplicate ACK is received, the sender does not know if it is because a TCP 

segment was lost or simply that a segment was delayed and received out of order at the 

receiver.  If the receiver can re-order segments, it should not be long before the receiver 

sends the latest expected acknowledgement. Typically no more than one or two duplicate 

ACKs should be received when simple out of order conditions exist.  If however more 

than two duplicate ACKs are received by the sender, it is a strong indication that at least 

one segment has been lost.  The TCP sender will assume enough time has lapsed for all 

segments to be properly re-ordered by the fact that the receiver had enough time to send 

three duplicate ACKs. 

 
When three or more duplicate ACKs are received, the sender does not even wait for a 

retransmission timer to expire before retransmitting the segment (as indicated by the 

position of the  duplicate ACK in the  byte stream).   This process  is called the  Fast 

Retransmit algorithm and was first defined in [11].   Immediately following Fast 

Retransmit is the Fast Recovery algorithm. 

 
3.4 Fast Recovery 

 

 

Since the Fast Retransmit algorithm is used when duplicate ACKs are being received, the 

TCP sender has implicit knowledge that there is data still flowing to the receiver.  Why? 

The reason is because duplicate ACKs can only be generated when a segment is received. 

This is a strong indication that serious network congestion may not exist and that the lost 

segment was a rare event.  So instead of reducing the flow of data abruptly by going all 

the way into Slow Start, the sender only enters Congestion Avoidance mode. 

 
Rather than start at a window of one segment as in Slow Start mode, the sender resumes 

transmission with a larger window, incrementing as if in Congestion Avoidance mode. 

This allows for higher throughput under the condition of only moderate congestion [23]. 

 
To summarize this section of the paper, figure 2 below depicts what a typical TCP data 

transfer phase using TCP congestion control might look like.   Notice the periods of 

exponential window size increase, linear increase and drop-off.  Each of these scenarios 

depicts the sender‟s response to implicit or explicit signals it receives about network 

conditions. 

Figure 2  Congestion Control Overview 
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4.0 Latest Techniques 
 

 

Although RFC 2581 and its associated algorithms have been doing an excellent job in 

ensuring top performance in lieu of congestion on TCP/IP networks, there are still a lot of 

works going into enhancing TCP performance and responsiveness to congestion.  During 

the 1990‟s  researchers such as Sally Floyd, Van Jacobson, Mark Allman, W. Richard 

Stevens, Jamshid Mahdavi and a host of others starting producing a massive amount of 

research and experiments with TCP and related congestion control ideas.  The wealth of 

information in this area is really phenomenal and it is hard to pick out some of the best 

ideas to present in this paper.   Nevertheless, this section is an attempt to provide an 

overview of some of those popular ideas over the last decade.   TCP and congestion 

control on  the  Internet is an area that  is still  actively  being researched.    For more 

information, consult the references noted in this paper. 

 
4.1 Selective Acknowledgements 

 

 

Whenever a TCP segment has been sent and the sender‟s retransmission timer expires, 

the sender is forced to retransmit the segment, which the sender assumes has been lost. 

However, it is possible that between the time when the segment was initially sent and the 

time when the retransmission window expired, other segments in the window may have 

been sent after the lost segment.  It is also possible that these later segments arrived at the 

receiver and are simply queued awaiting the missing segment so they can be properly re- 

ordered.   The receiver has no way of informing the sender that it has received other 

segments because of the requirement to acknowledgement only the contiguous bytes it 

has received.  This case demonstrates a potential inefficiency in the way TCP handles the 

occasional loss of segments. 

Ideally, the sender should only retransmit the lost segment(s) while the receiver continues 

to queue the later segments.  This behavior was identified as a potential improvement in 

TCP‟s congestion control algorithms as early as 1988 [10].  It was only until recently 
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that a mechanism to retransmit just the lost segments in these situations was put into 

standard TCP implementations [15], [16]. 

 
Selective Acknowledgement (or SACK) is this technique implemented as a TCP option 

that can help reduce unnecessary retransmissions on the part of the sender.  If the TCP 

connection has negotiated the use of SACK (through the use of the TCP header option 

fields), the receiver can offer feedback to the sender in the form of the selective 

acknowledgement option.  The receiver reports to the sender, which blocks of data have 

arrived using the format show in figure 3 below. 

 

 

 
Figure 3  SACK Option 

 

 

This list of blocks in the SACK option tells the sender which contiguous byte stream 

blocks it has received.  At maximum, four SACK blocks can be sent in one TCP segment 

because of the maximum size of the options field in a TCP head is 40 bytes and each 

block report consists of 8 bytes plus the option header field of 4 bytes (for a total of 36 

bytes). 

 
Note that the SACK information is advisory information only.  The sender cannot rely 

upon the receiver to maintain the out-of-order data.  Obviously the performance gain is to 

be had when the receiver does queue and re-order data that has been reported with the 

SACK option so that the sender limits its retransmissions. 

 
4.2 NewReno 

 

 

The Tahoe implementation of BSD included the ability to do Slow Start, Congestion 

Avoidance and Fast Recovery. Reno was the implementation of TCP that included the 

Tahoe implementation plus the ability to do Fast Retransmit.   NewReno is a slight 

modification to the Reno implementation of TCP [7] that can improve performance 

during Fast Recovery and Fast Retransmit mode.2
 

 
2 The original names of Reno and Tahoe were derived from the names of BSD TCP/IP implementations. 

 

The NewReno implementation only applies if SACK has not been negotiated in a 

connection.  From [7], an overview of the NewReno is as follows: 

 
In the absence of SACK, there is little information available to the TCP sender in 
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making retransmission decisions during Fast Recovery. From the three duplicate 

acknowledgements, the sender infers a packet loss, and retransmits the indicated 

packet.After this, the data sender could receive additional duplicate 

acknowledgements, as the data  receiver acknowledges additional  data  packets 

that were already in flight when the sender entered Fast Retransmit. 

 
In the case of multiple packets dropped from a single window of data, the first 

new information available  to the  sender  comes when the  sender  receives an 

acknowledgement for the retransmitted packet (that is the packet retransmitted 

when Fast Retransmit was first entered).   If there had been a single packet drop, 

then the acknowledgement for this packet will acknowledge all of the packets 

transmitted before Fast Retransmit was entered (in the absence of reordering). 

However, when there were multiple packet drops, then the acknowledgement for 

the retransmitted packet will acknowledge some but not all of the packets 

transmitted before the Fast Retransmit.    We call this packet a partial 

acknowledgment. 

 
According to RFC 2582 above, the TCP sender should infer from the partial 

acknowledgement that the indicated segment has been lost and immediately retransmit 

the segment.3 

 

 

4.3 Other TCP Congestion Control Techniques 
 

 

There are a number of other proposals and experiments that have been performed on TCP 

to improve performance.  In this section, we will just briefly cover two of the most recent 

from some of the leading researchers in the field. 

 
4.3.1 Increasing TCP‟s Initial Window Size 

 

 

The experimental RFC 2414 [Allman98] suggests increasing TCP‟s initial window size 

from one segment to roughly 4 kilobytes. By doing so, in certain situations it is believed 

to offer better performance by being able to fill the “pipe” quicker. 

 
4.3.2 TCP Pacing 

 

 

If a TCP sender, a router or other intermediate device space TCP packets apart, the bursty 

nature of data transmission may be reduced.  The intended affect is that by reducing the 

 
3 We use the term segment in place of packet as is used in RFC 2582 ,but essentially the meanings of the 

two are the same for our purpose here.bursts in network traffic, periods of congestion and 

eventual packet loss are also reduced. Its advantages and disadvantages are only 

beginning to be understood [1].  However, a popular commercial product already 

implements a technique similar to TCP pacing and is being installed in many large 

organizations [Packeteer00]. 

 
4.4 Non-TCP Congestion Control Techniques 
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There are number of techniques which are worth our time to examine even though they 

are not directly implemented within TCP software on end systems.  These techniques can 

indirectly affect TCP congestion control. 

 
For example, whenever a router drops a packet, it in effect is providing a signal to the 

TCP sender to slow down by causing a retransmission timer to expire.  If routers could 

use some advanced packet drop techniques, they may be able to better control network 

congestion through the implicit signals TCP senders detect. 

 
Also, there are non-technical designs that can affect network performance.   By 

implementing a system where a cost is associated with network transmission, end stations 

may adjust their transmission rate up or down based on the value of performance they 

may require.  Both of these types of techniques are briefly explored below. 

 
4.4.1 Random Early Detection 

 

 

Perhaps one of the most notable enhancements to congestion control techniques has been 

the development of Random Early Detection (RED) for internetwork routers.    This 

algorithm manages router queues and drops packets based on a queue threshold.  This in 

effect  causes  congestion  control  to  be  activated  just  prior  to  any  actual  network 

congestion event. 

 
For example, to signal traditionally implemented TCP senders to slow down, a router 

using RED will monitor its average queue depth.   As network traffic increases and 

crosses a threshold, RED will begin to drop packets with a certain probability.   TCP 

senders will go into Slow Start and Congestion Avoidance mode once they have detected 

a lost packet.  This helps the network slow down before actual congestion occurs. 

 
The beauty of this technique is that is fairly simple to implement and it helps prevent high 

bandwidth TCP connections from starving low bandwidth TCP connections.   It also does 

not allow unfriendly TCP implementations to gain an unfair advantage by removing the 

sole  reliance on the  TCP  sender/receiver  trust  relationship.      Since  the  packet  drop 

function is based on a certain probability, connections using a larger share of the 

bandwidth will have more of their traffic dropped than low bandwidth users. RED was 

first described in [4] and is recommended in [3]. 

 

4.4.2 Explicit Congestion Notification 
 

 

Also briefly described in  [4] and further expanded upon in  [5], Explicit Congestion 

Notification (ECN) is a technique that just marks packets instead of dropping them as 

RED usually does.   The idea behind implementing ECN instead of RED is to avoid 

packet drops, particularly where the delay involved caused by retransmission needs to be 

avoided.  Good examples of cases where this delay should be avoided are with real-time 

applications such as two-way voice communications or when using a terminal program 

such as TELNET. 
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Routers can mark two bits in the IP Type of Service (ToS) header field to signal whether 

or not congestion is occurring.  TCP senders can then adjust their rate of transmission 

appropriately if they see that these bits are set to indicate a network congestion condition 

is occurring. 

 
4.4.3 Network Pricing 

 

 

An entirely different category of congestion control is through the use of a network- 

pricing model.  In this case, the cost of transmission either in time, usage or capacity can 

be on a fee basis.  By making the transmission of TCP non-free, there may be a monetary 

incentive to avoid congestion [13].   Applying a cost on transmission may help force 

senders to minimize the amount of traffic they generate.  This in effect attempts to make 

it expensive for users to cause congestion and high load conditions.  It is analogous to 

getting a speeding ticket on the highway. 

 
5.0 Conclusion 

 

 

Over the past decade a large amount of research and experimentation has gone into TCP 

performance and congestion control. A great deal of that work has paid off in the form of 

an Internet that continues to function considerably well even in light of the increasing 

traffic demands. 

 
Now of great concern to a number of network practitioners is the concept of “network 

fairness”.  Here the goal is to provide some level playing field for all participants, and to 

avoid the greedy or “eager”  TCP senders to make room for low bandwidth connections. 

The use of RED is one mechanism that is becoming popular among Internet Service 

Providers and large organizations. 

 
It remains to be seen how far current congestion control techniques can carry the Internet 

as its growth continues.  So far they have performed admirably. 

Abbreviations 
 

 

ACK               Acknowledgement 

bit                   binary digit 

BSD                Berkely Software Distribution 

ECN               Explicit Congestion Notification 

Gb/s                Gibabits per second 

HTTP             HyperText Transfer Protocol 

IETF               Internet Engineering Task Force 

IP                    Internet Protocol 

ISP                  Internet Service Provider 

Kb/s                Kilobits per second 

MSS                Maximum Segment Size 

RED               Random Early Detection 
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RFC                Request For Comments 

RSVP              Resource ReSerVation Protocol 

SACK             Selective ACKnowledgement 

SMTP             Simple Mail Transfer Protocol 

TCP                Transmission Control Protocol 

TCP/IP           Transmission Control Protocol/Internet Protocol 

ToS                 Type of Service 

UDP               User Datagram Protocol 
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