
Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

146 | P a g e w w w . i j l t e m a s . i n

An Approach of Security for Handling the Security

Threats for Distributed Systems
Farman Ali

#1
, Syed Nusrat

 *2
, Dr. Sachin Kumar*3

Department of Computer Science, SJJT University
Churu-Bishau Road, Chudella,Jhunjhunu, Rajasthan, India

1
raofarmanmca@gmail.com
2
nusrat.syed@gmail.com

3imsachingupta@rediffmail.com

Abstract
With the rapid growth of the information age, open distributed

systemshave become increasingly popular. The need for

protection andsecurity in a distributed environment has never

been greater. Theconventional approach to security has been to

enforce a system-widepolicy, but this approach will not work for

large distributed systemswhere entirely new security issues and

concerns are emerging. Weargue that a new model is needed that

shifts the emphasis from“system as enforcer” to user-definable

policies. Users ought to be ableto select the level of security they

need and pay only the necessaryoverhead. Moreover. Ultimately,

they must be responsible for theirown security.This research is

being carried out in the context of the Legion project.We start by

describing the objectives and philosophy of the overallproject

and then present our conceptual model and design decisions.

Aset of technical challenges and related issues are also addressed.

Keywords:Distributed Kernel; Heterogeneity;Legion

Project;Authentication;Delegation; Legion Object Model;

System Philosophy;

1. Introduction

High speed networking has significantly changed the nature

ofcomputing, and specifically gives rise to a new set of

securityconcerns and issues. The conventional security

approach hasbeen for ―the system‖ to mediate all interactions

between usersand resources, and to enforce a single system-

wide policy.This approach has served us well in the

environment of acentralized system because the operating
system implementsall the key components and knows who is

responsible for eachprocess.

However, in a large distributed system several things have
changed:

 Distributed Kernel: There is no clear notion of a

single protected kernel. The path between any two

objects mayinvolve several machines that are not

equally trusted.

 System Scope and Size: The system is usually much

larger than a centralized one. It may very well be a

federation of distinct administrative domains with

separate authorities.

 Heterogeneity: The system may involve many

subdomains with distinct security policies, channels

that are secured in several ways, and platforms with

different operation systems.

The intricate nature of distributed system has
fundamentallychanged the requirement of system security. We

areinvestigating a new model of computer security - a

modelappropriate to large distributed systems in the context

ofLegion - a system described below.

Users of Legion-like systems must feel confident that

theprivacy and integrity of their data will not be compromised

-either by granting others access to their system, or by

runningtheir own programs on an unknown remote computer.

Creatingthat confidence is an especially challenging problem

for anumber of reasons; for example:

 We envision Legion as a very large distributed

system; at least for purposes of design, it is useful to

think of it as running on millions of processors

distributed throughout the galaxy.

 Legion will run on top of a variety of host operating

systems: it will not have control of the hardware or

operating system on which it runs.

 There won’t be a single organization or person that

―owns‖ all of the systems involved. Thus no one can

be trusted to enforce security standards on them;

indeed, some individual owners might be malicious.

No single security policy will satisfy all users of a huge

system.We cannot even presume a single ―login‖mechanism -

some situations will demand a far morerigorous one than

others. Moreover we cannot anticipate allthe policies or login

mechanisms that will emerge; both will beadded dynamically.

And, for both logical and performancereasons, the potential

size and scope of Legion suggest thatwe should not have

distinguished ―trusted‖ components thatcould become points

of failure/penetration or bottlenecks.

Running ―on top of’ host operating systems has

manyimplications, but in particular it means that in addition to

theusual assumption of insecure communication, we must

assumethat copies of the Legion system itself will be

Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

147 | P a g e w w w . i j l t e m a s . i n

corrupted (rogueLegionnaires), that some other agent may try

to impersonateLegion, and that a person with ―root‖ privileges

to acomponent system can modify the bits arbitrarily.

The assumption of ―no owner‖ and wide

distributionexacerbates these issues, of course. Since Legion

cannot replace existing host operating systems, the idea of

securingthem all is not a feasible option. We have to presume

that atleast some of the hosts in the system will be

compromised, andmay even be malicious.

These problems pose new challenges for computer

security.They are sufficiently different from the prior

problems facedby single-host systems that some of the

assumptions that havepervaded work on computer security

must be re-examined.Consider just two such assumptions. The

first is that security isabsolute; a system is either secured or it

is not. A second is that―the system‖ is the enforcer of security.

In the physical world, security is never absolute. Some

safesare better than others, but none is expected to withstand

an arbitrary attack. In fact, safes are rated by the time they

resistparticular attacks. If a particular safe isn’t good enough,

itsowner has the responsibility to get a better one, hire a

guard,string an electric fence, or whatever. It isn’t ―the
system‖,whatever that may be, that provides added security.

Note that we said that users must feel ―confident‖; we did

notsay that they had to be ―guaranteed‖ of anything.

Securityneeds to be ―good enough‖ for a particular
circumstance. Ofcourse, what’s good enough in one case may

not be in another- so we need a mechanism that first lets the

user know howmuch confidence they are justified in having,

and secondprovides an avenue for gaining more when

required.

The phrase ―the trusted computing base‖ (TCB) is

commonwhen referring to systems that enforce a security

policy. Themental image is that ―the system‖ mediates all

interactionsbetween users and resources, and for each

interaction decidesto permit or prohibit it based on consulting

a ―trusted database‖; the Lampson access matrix [] is the

archetype of suchmodels. Even communications, which is

inherently insecure,is usually presumed to be inside the

perimeter and the systemis considered to be responsible for

implementing securecommunication on top of the insecure
base.

As with the previous assumption, this one just doesn’t work

ina Legion-like context. In the first place there isn’t a

singlepolicy, new ones may emerge all the time, and
thecomplexities of overlapping/intersecting security domains

blurthe very notion of a perimeter to be protected. In the

secondplace, since we have to presume that the code might

bereverse-engineered and modified, we cannot rely on

thesystem enforcing security - or very much of anything,

forthat matter.

Moreover, security has a cost in time, convenience, or

both.The intuitive determination of how much confidence is

―goodenough‖ is moderated by cost considerations. As

weobserved many times, one reason that extant computer

systemshave not paid more attention to security is that the

cost,especially in convenience, is too high. These prior

systemstook the ―security is absolute‖ approach, and everyone

paidthe cost regardless of their individual needs. To succeed,

ourmodel must scale - it must have essentially zero cost if

nosecurity is needed, and the cost must increase in proportion

tothe extra confidence one gains.

 The above observation calls for rethinking some very

basic,often stated assumptions - that is, a change in the way

ofthinking and a shift in security paradigm. In the rest of

thepaper, we suggest a new security model that differs from
thetraditional approach. We also illustrate ideas to deal with

theissues raised above, as well as others. Before proceeding

todescribe our plan of attack, the following describes the

Legionsystem to provide context.

2 Backgrounds - The Legion Project

The Legion project at the University of Virginia is an

attemptto provide system services that create the illusion of a

singlevirtual machine, a machine that provides secure shared

objectand shared name spaces, high performance via both task

anddata parallelism, application adjustable fault-

tolerance,improved response time, and greater throughput.

Legion istargeted towards wide-area assemblies of

workstations,supercomputers, and parallel supercomputers.

Such a system,if constructed, will unleash the integrated

potential of manydiverse, powerful resources which may very
wellrevolutionize how we work, how we play, and in general,

howwe interact with one another.

The potential benefits of Legion are enormous. We envision(I)

more effective collaboration by putting co-workers in thesame
virtual workplace; (2) higher application performancedue to

parallel execution and exploitation of off-site resources;(3)

improved access to data and computational resources;

(4)improved researcher and user productivity resulting

frommore effective collaboration and better

applicationperformance; (5) increased resource utilization;

and (6) aconsiderably simpler programming environment for

theapplications programmers. Indeed, it seems probable to us

thatthe NII can reach its full potential only with a Legion-

likeinfrastructure.

2.1 The Legion Object Model and System Philosophy

Legion is an object-oriented meta-system’. The principles

ofthe object-oriented paradigm are the foundation for

theconstruction of Legion; all components of interest in

Legionare objects, and all objects, including classes, are
instances ofclasses. Use of the object-oriented paradigm

enables us toexploit the paradigm’s encapsulation and

inheritanceproperties, as well as benefits such as software

reuse, faultcontainment, and reduction in complexity.

Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

148 | P a g e w w w . i j l t e m a s . i n

Hand-in-hand with the object-oriented paradigm is one of

ourdriving philosophical themes: we cannot design a system

thatwill satisfy every user’s needs; therefore we must design
anextensible system. This philosophy manifests

itselfthroughout, particularly in our use of delayed binding

andwhat we call ―service sliders‖. Consider security. There is

atrade-off between security and performance (due to the cost

ofauthentication, encryption, etc.). Rather than providing a

fixedlevel of security - with the result that no one will be

happy, weallow users to choose their own trade-offs by

implementingtheir own policies or using existing policies via

inheritance.Similarly users can select the level of fault-

tolerance that theywant - and pay for only what they use. By

allowing users toimplement their own or inherit services from

library classeswe provide the user with flexibility while at the
same timeproviding a menu of existing choices.

2.2 Design Objectives and Restrictions

We have the following design objectives, against which
wemeasure our success; site autonomy; an extensible

core;scalability; easy-to-use, seamless computational

environment:high performance via parallelism; single,

persistentnamespace; security for both users and resource

providers;manage and exploit resource heterogeneity, and

faulttolerance.

In addition to the goals above, two constraints restrict

ourdesign - we cannot replace host operating systems, and

wecannot legislate changes to the interconnection network.

To accomplish the goals, many technical,

political,sociological, and economic issues need to be

resolved. In thispaper we attempt to address the security

aspect of the Legionproject.

3 The Security Model

In this section we describe a design for the security model

inLegion. The model, following closely to the

Legionphilosophy, responds to the issues raised in the

introduction.We first present the design guidelines and

principles. Wediscuss the trade-offs and our design decisions.

We thenexplain how the model works, in particular how it can

be usedto enforce discretionary policies.

The premise here is that we cannot, and indeed should

not,provide a guarantee of security. What we can and should

do is(1) be as precise as possible about the degree of

confidence auser can have, (2) make that confidence ―good

enough‖ and―cheap enough‖ for an interestingly large

selection of users,and (3) provide a context that allows the
user to gain theadditional confidence they require with a cost

that isintuitively proportional to the added confidence they

get.

3.1 Design Principles
The Legion Security model is based on three principles:

 First, as in the Hippocratic Oath, do no harm!

 Second, caveat emptor let the buyer beware.

 Third, small is beautiful.

Legion’s first responsibility is to minimize the possibility
thatit will provide an avenue via which an intruder can

domischief to a remote system. The remote system is, by

thesecond principle, responsible for ensuring that it is running

a valid copy of Legion - but subject to that, Legion should not

permit its corruption.

The second principle means that in the final analysis users

areresponsible for their own security. Legion provides a

modeland mechanism that make it feasible, conceptually

simple, andinexpensive in the default case, but in the end the

user has theultimate responsibility to determine what policy is

to beenforced and how vigorous that enforcement will be.

This, wethink, also models the ―real world‖; the strongest

door with thestrongest lock is useless if the user leaves it

open.

The third principle simply means, given that one

cannotabsolutely, unconditionally depend on Legion to

enforcesecurity, there is no reason to invest it with

elaboratemechanisms. On the contrary, at least intuitively, the

simplerthe model and the less it does, the lower the
probability that acorrupted version can do harm. The

remainder of the paperdescribes such a simple, albeit evolving

model. Thedescription is discursive, but a much shorter,

formal definitionwill be forthcoming.

As noted above, Legion is an object-oriented system. Thus,

 the unit of protection is the object, and

 the ―rights‖ to the object allow invocation of its

member functions (each member function is

associated with a distinct right).

This is not a new idea; it dates to at least the Hydra system

inthe mid 1970’s 161 and is also in some proposed

CORBAmodels. Note, however, that it subsumes more

commonnotions such as protection at the level of file systems.

InLegion, files are merely one type of user-defined object that

happen to have methods read/write/seek/etc. Directories

arejust another type of object with methods such as

lookup/enter/delete/etc. There is no reason why there must be

only one typeof file or one type of directory and, indeed, these

need not bedistinguished concepts defined by, or even known
to Legion.

The basic concepts of the Legion Security Model are

minimal;there are just four:

 Every object provides certain known member

functions(that may be defaulted to NIL); the ones we

willdescribe here are ―MayI,‖ ―Jam,‖ and ―Delegate.

―.

 There is a ―responsible agent‖ (RA) associated

witheach operation. The RA is someone who can be

Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

149 | P a g e w w w . i j l t e m a s . i n

heldaccountable for the particular operation. There

are a certainset of member functions associated with

an RA object.User-defined objects can play the role

of RA by supplyingthese member functions.

 Every invocation of a member function is

performedin an environment consisting of a pair of

(unique) objectnames - those of the operative

responsible agent, and―calling agent‖, CA.

 There are a small set of rules for actions that

Legionwill take, primarily at member function

invocation. Theserules are defined informally here.

The general approach is that Legion will invoke the

knownmember functions (MayI, etc.), thus giving objects

theresponsibility of defining and ensuring the policy.
Preciselyhow this happens is detailed in the following

sections.

3.2 Protecting Oneself – Privacy

In Legion users are responsible for their own security.
Theyare the ones, who decide how secure their applications

ought tobe, and from there, which policy is to be enforced and

howrigorous the enforcement should be.

For example, a truly paranoid user’s object can (and should,
ifthey deem it important) include code in every method

toauthenticate the caller and to determine whether that caller

hasthe right to make this call. This cautious user most likely

willnot be satisfied unless some elaborate authentication

scheme isused to identify the caller.

For many users, however, this degree of caution isunnecessary

and some delegation to the Legion mechanism isappropriate -

for example, rather than engaging in anauthentication dialog

with the caller, an object might trust thatthe CA field of the

environment is correct. In the followingwe’ll describe how the

model facilitates appropriate, situation-specific delegation; for

readability we’ll precede in severalsteps, each of which adds a

bit more detail and refinement.

Our first objective is to have policies defined by the
objectsthemselves. At the same time, we don’t want to have

toinclude policy-enforcement code in every member

functionunless the object is particularly sensitive. So, instead,

werequire that every class define a special member

function,―MayI‖ (this can be defaulted, but we’ll ignore that

for now).MayI defines the security policy for objects of that

class.Conceptually at least, Legion will automatically call the

MayIfunction before every member function invocation, and

willpermit that invocation only if MayI sanctions it (see figure

1).

Figure 1

We’ll refine this in a moment to be both more efficient
andmore powerful -but note how this simple idea begins to

meetour objectives. First, it permits the creator of an object

class todefine the privacy policy for objects of that class; there

is nosystem-wide policy. Second, it is fully extensible - when

auser defines a new class its member functions become

the―rights‖ for that class and its MayI function/policy

determineswho may exercise those rights. Third, it is fully

distributed;there is no distinguished trusted data base (each

MayI mayconsult a database if it chooses, but there is no

―distinguished‖one(s)). Fourth, it is not particularly

burdensome; users candefault MayI to ―always OK‖, inherit a

MayI policy from aclass they trust, or write a new policy if the
situation warrantsit. Fifth, the code for implementing the

security policy islocalized to the MayI function rather than

distributed amongthe member functions. Finally, the default

―always OK‖ policycan be optimized so that there is no

overhead at all associatedwith the mechanism.

3.3 Authentication

The previous discussion left one question unanswered: who

orwhat is the ―I‖ that the MayI function grants access to?

Indeed,the request must first be authenticated to identify the

principalthat uttered it, and then authorized only if the
principal has theright to perform the operation on the object.

The principalbehind the request could be human users,

software programs,or compound identities such as

delegations, roles and groups.

Authentication in Legion is aided by the use of

Legionenvironment. Recall that the environment contains two

objectidentifiers, namely the calling agent (CA) and the

responsibleagent (RA). The CA is the object that initiated the

currentmethod call. The RA is a generalization of the ―user

id‖ inconventional systems; for the moment it is adequate to

think ofit as identifying the user or agent who was responsible

for thesequence of method invocations that lead to the current

one.

In the general spirit of our approach, the authentication of

thecaller and caller’s context can be anything that the

MayIfunction demands - and in sensitive cases, that is just as

itshould be. In most cases, however, ―I‖ will be simply CA,

orRA, or any subset of the two. Indeed, by analogy with

Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

150 | P a g e w w w . i j l t e m a s . i n

familiarsystems where ―I‖ is the user, that subset may be just

RA.

Legion makes a specified level of effort to assure

theauthenticity of the environment IDS; this effort should

beadequate for most purposes. However, in the spirit of

thesecond principle, we expect that MayI functions

withextraordinary security concerns will code their

ownauthentication protocols by, for example, calling back to

thecaller, and/or responsible agent. To make this possible,

werequire every Legion object to supply a special public
memberfunction - ―lam‖ for authentication purposes. In the

sameprinciple as ―MayI ―, ―lam‖ could be optimized to NIL.

Legion bases authentication on public-key cryptography in

thedefault case. Knowledge of the private key is the proof
ofauthenticity. In addition, a set of general

principleauthentication protocols will be provided as the

systemstandard. Yam‖ can choose to support all or none of

them.Other more elaborate protocols could be negotiated

betweenobjects and made known to the ―lam‖ function.

Objectsunprepared to adequately authenticate themselves are

ipsofacto not to be trusted. The result of ―Iam‖ can be cached

forfuture reference, but that is an implementation choice and

isbeyond the scope ofthis paper.

3.4 Login

The avenue via which Legion users authenticate themselves

toLegion is the Login procedure. Login establishes

user’sidentity as well as creating a responsible agent object for

theuser. The login procedure is therefore the building block

forfuture authentication, delegation and creating of
compoundidentities.

By the same design principle, Legion should not mandate

asingle ―Login‖ mechanism. Typically, there is a login

objectthat will be invoked when a user first logs in. This login
objectengages in a login dialog with the user and, if

satisfied,declares itself to be the responsible agent. Actually,

anyI.egion object may declare itself to be the current

responsibleagent should it choose. It simply does so by

executing a ―RA =me‖ command (environments are stacked,

so that a returnfrom an object executing this command will

revert to theprevious RA).

There are many advantages to why we shouldn’t make

this―login‖ mechanism universal. For example, logging on

toLegion in UVa may require only a simple password

whileLegion in CIA might demand their users to submit

fingerprintsor retinal scan information. Users can define their

own loginclass with varying degrees of rigor in the login

dialog, specificto their needs. The ―login‖ mechanism can also

be easilyinherited or defaulted to some simple scheme.

How do we know that a particular login class is to be

trusted?We don’t, in general. The MayI function of another

class neednot believe the login! After interrogating the class

of theresponsible agent the MayI function may reject the call

if thelogin is either insufficiently rigorous, or simply unknown

to this MayI. As in the infamous ―real world‖, trust can only

beearned.

3.5 Delegation

In all security models one must consider how rights

propagate;can a principal hand all or some of its authority to

another,and how can a principal restrict its authority? For

example, auser on a workstation may wish to delegate the

―read‖ right onher files to the C compiler. The compiler can

then access fileson her behalf as long as the delegation still

stands, much in thesame way the user may wish to delegate.

Just as the basicsecurity policy is embedded in MayI and not

in Legion, ourmodel does not answer this question - but it

does provide auniform way for the user to answer it.

We require every Legion object to have another

publicmethod, ―Delegate.‖ The parameters to Delegate are the

ID ofthe object to which rights should be delegated, and a set
ofrestrictions that limit those rights. For example, a user

objectsA wants to invoke a compiler C and pass the ―read-

only‖ righton file F to C. To accomplish this, A must invoke

the―Delegate‖ function of F to request such a delegation.

Using aC++ like notation, but prefixing it with the name of

theexecuting object and a colon, this is:

A: F.Delegate(C, read);

F, upon receiving the above request, can grant thedelegation,

reject it, or grant delegation of a more restrictedauthority than

what is requested. Granting delegation mayresult in storing

some information locally or in creation of anew entry in some

database (for example, an access control list) known to MayI.

A then instructs C to compile he file by passing it the ID of F.

A: C.Compile (F)

When C attempts to read F, F’s MayI is invoked.

MayIrecognizes this delegated authority either by looking up

somelocal information or consulting some external database.

Theoperation is thus permitted. However, if C attempts to

invokeany of F’s other methods, F will disallow this.

Our philosophy is that delegation policy is a part of

thediscretionary policy which should be defined by the

objectitself. Indeed, delegation policies can be arbitrarily
complex orlight weight. Classes that want to take extreme

precautionsagainst delegation may choose not to support

delegation at all- this is the default. Alternatively, users can

write their owndelegation functions or inherit appropriate ones

from existingclasses - for example, by including a time limit

as part of theaccess database, delegation can be made to

expire after certaintime period.

So far we have discussed three security-related

functions:MayI, lam and Delegate. They are user-defined

functions,together, quite elegantly; they form a guard or

Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

151 | P a g e w w w . i j l t e m a s . i n

referencemonitor upon which any discretionary policy can be

defined.In addition.

 ―MayI‖. ―lam‖ and ―Delegate‖ can be defaulted

toNIL and hence will impose no overhead. And

indeed, manyclasses will favour the default case

for performance reasons.

When these functions are non-NIL, they enforceuser-definable

policies rather than some global Legiondefinedone,

These functions can be as simple or as elaborate asthe user

feels necessary to achieve their comfort level – the―service

slider‖ approach again.

4 Mandatory Policies

Mandatory policies, such as multi-level security, presume

thatthe parties involved may be conspirators and impose some
sortof check by a third party - usually ―the system‖ –

betweencaller and called objects. Generally this imposition

iscompletely dynamic - every call is checked.In the Legion

context, of course, we eschew the idea of asystem-wide

policy. Thus we need a safe mechanism thatinterposes an

arbitrary enforcer of an arbitrary policy betweencaller and

called object. Interestingly, when combined withinheritance,

the MayI function already discussed provides halfthe answer,

albeit in a somewhat different way.

Imagine that a new mandatory security regime is to be

created.An obvious consideration is that the enforcer, which

we’ll callthe ―security agent‖ must know about all of the kinds

ofobjects in its domain -it cannot enforce ―no write down‖ if

itdoesn’t know what a ―write‖ to a specific object is,
forexample. Thus we’ll begin with the presumption that a

goodsecurity agent simply won’t allow calls on objects of

unknownpedigree.Given that, it is reasonable to presume that

the security agentcan derive subclasses for the objects that it

does know about;in these subclasses the security agent can

inherit a MayI function of its choosing - and specifically one

that invokesthe security agent to verify the validity of each

inward call. Allthe objects and only the objects that are

instances of thesederived classes will be permitted in this

security agent’sregime.Derived classes will be permitted in

this security agent’sregime.

As noted above, this solves half the problem - the

securityagent is invoked whenever an object under its control

is called.We need to add the symmetric capability for outward

calls;thus we add a method I want to that, if non-null is
invoked byLegion whenever an object attempts to make a call

on anotherobject. Now, by deriving a class that defines both

the MayI andI want to methods, the security agent can be

ensured that itgets invoked on every call involving one of the

objects underits control. Finally, although we won’t discuss it

here, obviously we candefine a license mechanism for I want

to that is analogous tothat for MayI, with the analogous

benefit – I want to can getinvolved as much or as little as it

deems appropriate.

6. Conclusion and Opportunities for Further

 Research
We have discussed database security issues in general and
how the database model affects database system security in

particular. We have seen that security protections for

OODBMS and RDBMS are quite different. Each model has

significant strengths and weaknesses. Currently, the RDBMS

is the better choice for a distributed application. This is due to

the relative maturity of the relational model and the existence

of universally accepted standards.

The recent emergences of hybrid models that combine the

features of the two models discussed raise many new security

questions. For example, Informix’s Illustrate combines a

relational database schema with the capability to store and

query complex data types. They call this system an ―object-

relational database.‖ Informix claims that their system has all

the capabilities of a RDBMS, including ―standard security

controls‖ with the principle advantage of an OODBMS:
encapsulation, inheritance, and direct data access through the

use of data IDs. This hybrid and similar systems offered by

Oracle and others raise many new questions. For example, do

the relational database security controls work well with

complex data types and objects? How well do these security

controls interface with encapsulation and object methods?

What new avenues of attack have been opened by the

combination of these two seemingly different concepts? What

special security problems will arise when the object relational

system is extended to the distributed environment?

In addition to the questions raised above, there are also

opportunities for research in several other areas. They include

subject authorization strategies for heterogeneous distributed

systems, inference prevention strategies for both centralized

and distributed database systems, and distributed object-

oriented database security standards.

ACKNOWLEDGEMENTS

This research paper is the part of my PhD work. I am doing
PhD in Computer Science. This paper will help in the Design

and Implementation of a Heterogeneous DistributedDatabase

Inference Controller. One of the most important of these

factors are single level and multilevel access controls,

protection against inference, and maintenance of integrity. For

determining that which distributed database model will be

more secure for a particular application, the decision should

not be made purely on the basis of available security features.

Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

152 | P a g e w w w . i j l t e m a s . i n

REFERANCES

 C. Batini, S. Navathe, Conceptual database design.

 R.V. Binder, Testing Object-Oriented Systems—

Models, Patterns, and Tools.

 M. Blaha, W. Premerlani, Object-Oriented Modeling
and Design for Database Applications.

G. Dhillon, Information Security Management.

 R. Elmasri, S. Navathe, Fundamentals of Database

Systems.

 IEEE Standards for software verification and

validation.

 M.R. Adam, Security-control methods for statistical

database: a comparative study, ACM Computing

Surveys.

 BELL751 Bell, D., and L. LaPadula, July 1975,
 Secure Computer Systems: Unified Exposition

 And Multics Interpretation, TechnicalReport
 NTIS AD-A023588, the MITRE Corporation,

 FORD901 Ford, W., J. OKeeffe, and B.

Thuraisingham, August 1990, Database Inference

Controller: An Overview, Technical Report MTR

10963, Vol. 1, The MITRE Corporation, Bedford,

 MA (a version accepted for publication in Data and

 KnowledgeEngineering Journal- North Holland).

 RUB1901 Rubinovitz, H. H., and B. Thuraisingham,

August 1990, Secure Distributed Query Processor

Overview, MTR 10969, Vol.1, The MITRE

Corporation, Bedford, MA (version published inthe

Journal of Systems and Software, Vol. 21).
 Thuraisingham, B., July 1990, Handling ssociation-

based Constraints in Multilevel Database Design,

Workingaper, The MITRE Corporation (a version

presented at the 4th RADC Database Security

Workshop).

