
Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

24 | P a g e w w w . i j l t e m a s . i n

Improve Query Caching for Dynamic Content Web Sites

 Kakkatil Binita [1], Chandan pal singh [2], Surendra kr.Jangir [3]

 [1]Department of Electronics Engineering, PIIT,Navi Mumbai, Maharashtra, INDIA

 [2]Departmentof CS & IT,Jagannath University, Jaipur, Rajasthan,INDIA

 [3]Departmentof CS & IT,Jagannath University, Jaipur, Rajasthan,INDIA

 Binik2@gmail.com[1], chandanengg@gmail.com[2], jangir_cse@yahoo.co.in [3]

ABSTRACT

In this paper, we study how improves performance

of query caching for dynamic content web sites.

The dynamic web server is composed of a

traditional web server attached to an application

server. The web servers are typically replicated for

load balancing and fault tolerance. The application

server performs the necessary computation to

determine what data is required from the database.

It then queries the database and constructs replies

based on the results of the queries. For the

purpose of this paper we consider the combination

of the web server and the application logic

collectively as the front-end and the database as

the back-end. We propose and apply a cycle of

optimizations for a fully crystal clear dynamic

content cache suitable for any web application. We

optimize the query cache to handle full and partial

coverage of query results at the expense of

additional processing. We propose several

optimizations that reduce the load on the database

leading to higher performance.

Index Terms— query cache, web server, application

server, web application, database

1. INTRODUCTION

Dynamic web pages are built according to a user’s references

or depend on mutable data. The dynamic web server is

composed of a traditional web server (WS) attached to an

application server (AS). The web servers are typically

replicated for load balancing and fault tolerance. When a

user accesses a dynamic web site, the request is received by

the web server and then forwarded to the application server.

The application server performs the necessary computation

to determine what data is required from the database. It

then queries the database and constructs replies based on

the results of the queries. For the purpose of this paper we

consider the combination of the web server and the

application logic collectively as the front-end and the

database as the back-end. To speed up the delivery of

dynamic web pages, database query caching has been

proposed by [1, 2]. With query caching, the results of recent

queries are cached locally and are reused on later queries.

By caching, both the latency of retrieving the results and

the load on the back-end is reduced. Caching dynamic

content is more complex than caching static content,

because the cached entries may become invalid as a result

of database updates. Moreover, earlier designs lack the

ability to retrieve partial results from the cache. In this

paper, we propose several optimizations that turn misses

caused by INSERT queries into partial misses. These

further reduce the load on the database leading to higher

performance.

 2. BACKGROUND

Logically, our dynamic content web server consists of a

front-end, containing the web server and the application

logic, a cache, and a database back-end. The cache

functions as a transparent proxy between the application

logic and the database to the application logic, the cache

appears as the database and to the database; the cache

appears as the application server. The cache takes as its

input the database queries generated by the application

logic. On a read query, the cache checks whether the results

of the query reside in the cache, and, if so, returns them

mailto:mailaccount@xxx.xx%5b3

Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

25 | P a g e w w w . i j l t e m a s . i n

immediately to the application. Otherwise, it forwards the

query to the database. The database returns the results of

the query to the cache, where they are inserted in the cache

and forwarded to the application. On an update query, the

cache performs the necessary invalidations and forwards

the update to the database. The cache may be located on the

same machine as the front-end, on a separate machine, or

on the same machine as the database. If the cache resides

on a separate machine, it can be connected to the rest of the

network through an L4 switch, so that the server can

continue to function when the cache machine is down.

There may be multiple machines executing the web server

and the application logic. There may also be multiple cache

machines.

3. QUERY CACHE

For the fast access the database we use the query cache.

Query cache will store all record of executed query. Query

cache will keep record of newly executed queries. The

major goal of the query cache is to reduce the response

time of query. It will increase the brainpower of data ware

house so that system will memorize the latest work it has

performed.[12]This memory will be used afterward for

answer the result of queries which has been earlier

performed by the users. The cache will maintain two

state valid and invalid state. When any query submitted by

the user, the cache memory is first examined to check

whether requested query is already store in the cache.

If the query is stored, then check the state is valid or

invalid. If state is valid then data can be access and if state

is invalid then data can’t be access. but If user send a

query of insert, update, delete and drop then data will

be alter in database and state of related query will be

invalid. Now invalid state data and query can’t be access by

user. This can save important time and improve data

warehouse performance by not reevaluating the queries

which are already stored in the cache. One of analyst

place a query to show me the employee of a company,

who working under the manager_id is 100,101,201. The

query will look like as follows: -

SELECT emp_id, name, salary, manager_id FROM

employees WHERE manager_id IN (100, 101, 201);

 When the query is submitted, query cache will be

examined to check whether this query is available or not

and state is valid or invalid. If it is not available, query will

be evaluated and result will be store in the query cache.

The results of the query are shown in the table1 –

Table 1 – output of the above query

Emp_id Name Salary Manager_id
Emp204 Ganesh 12000 100

Emp213 Ramdev 15500 201

Emp218 Mohan 13200 100

Emp222 Kishan 10690 101

Emp225 Raghuveer 14600 101

If any other user submitted the same query the result

will be retrieved from query cache because that query is

already stored in the cache. We will call this Query1.Let

suppose another user wants to the employee of a company,

whose salary greater than equal to 10000 AND

manager_id is 100,101. The query will look like as

follows:

SELECT emp_id, name, salary, manager_id FROM

employees WHERE manager_id IN (100, 101) and

Salary>=13000;

When the query is submitted, cache memory is examined.

Same query is stored in the cache memory and state is valid

then we can get the result of Query 2 as shown in Table 2.

Emp_id Name Salary Manager_id
Emp218 Mohan 13200 100

Emp225 Raghuveer 14600 101

Now result of Query 2 will be generated from the

Query 1 result set instead of going through from all the

data stored in the data warehouse. This process will save

lot of time and effort required to go through all the records.

Queries against complex view definitions must be

answered very fast because users engaged in decision

support activities require fast and quick answers to their

questions. Even with sophisticated optimization and

evaluation techniques, there is a limit to how fast one

can answer such queries. The main objective of a

materialized view is to improve query performance [11].

However, when a warehouse is updated especially due

to the changes of remote information sources, the

materialized views must also be updated. While queries

calling for up-to-date information are growing and

the amount of data reflected to data warehouses

has been increasing, the time window available for

making the warehouse up-to-date has been shrinking.

Hence, an efficient view maintenance strategy is one

of the outstanding issues in the data warehouse

environment. This can improve the performance of

query processing by minimizing OLAP queries

down time and interference. [3].

Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

26 | P a g e w w w . i j l t e m a s . i n

3.1 Query cache state

 Invalid –if query is not stored in query cache then

state will be invalid. If data is updated by user by

any these query insert, update delete the state will

be invalid.

 Valid – if query is stored in query cache and

not updated in database from any these query

insert, update delete the state will be valid.

Our problem is that we have a query and query result stored

in the cache. But if the warehouse is updated with the new

data the cache query result will reflect to old data. We will

create a mechanism of state; Query 1 is submitted by the

user and his result is stored in the query cache. When next

user submit the same query on updated data warehouse the

query cache will check the state if state is invalid, it

means the data warehouse is updated with new data. Now

the query doesn’t have to go through from all of the

records. It will get the last index of the query result stored

in the query cache. Then it will start searching the records

which meet the query criteria from onward to that index.

This can save lot of time and effort required to search the

large amount of data.

4. EXPERIMENTAL EVALUATION

4.1 Hardware Platform

We use the same hardware for all machines running the

client emulator, the web servers, the cache, and the

database. Each machine has dual AMD Athlon 2400

processors (running at approximately 2.1 Ghz), 512MB

SDRAM, and a 120 GB disk drive. All machines are

connected through a switched 100 Mbps Ethernet LAN.

4.2 Software Environment

All machines run RedHat Linux 9. We use Apache Tomcat

4.1 as our Web/Application server. We use MySQL v4.0 as

our database server. We increase the maximum number of

Apache processes to 150. With that value, the number of

Apache processes is never a limit on performance.

5. RELATED WORK

5.1 Overview of dynamic data caching

Dynamic web data can be cached at different stages in its

production: the final HTML page [5, 6], intermediate

HTML or XML fragments, database queries, or database

tables [4]. Combinations of various caches are also possible.

Intuitively, caching at the database stage typically offers

higher hit ratios, while caching at the HTML or XML stage

offers greater benefits in the case of a hit. There is no

conclusive evidence at this point that caching at any single

stage dominates the others. or instance, Labrinidis and

Roussoulos use a synthetic workload and conclude that

HTML page caching is superior [5], but Yagoub et al. use

TPC-D and conclude that database query caching is more

effective [7].It appears that the different caches are

complimentary [8,7]. This paper is concerned with database

query caching.Our methods can be extended to record

dependencies between HTML pages or fragments and

database data items,and we intend to investigate this in

further work.

5.2 Non-transparent approaches

Luo et al. [2] require the database designer to specify which

tables are cached. Updates to the cache are performed once

a minute. As of version 4.0.1, MySQL has begun

implementing a query cache alongside the database [9]. It

works similarly to our design but it runs on the same

machine as the database. Our method allows the cache to be

placed on a different machine allowing us to reduce the

load on the database machine. Oracle 9i also provides table-

level caching in the middle-tier and invalidation based on

time and events (database triggers), but no generalizable

solution for generating invalidations [4]. Yagoub et al. [7]

describe a declarative system for specifying a web site that

allows a designer control over HTML, XML and query

caches, including what to insert or to remove from the

cache and how to invalidate or update items in the cache.

Challenger etal. propose a cache API to control the contents

of the API [10]. Datta et al. propose annotating the

application logic to inform the cache which HTML

fragments are cacheable, similar to existing web site

design, and automatically maintains consistency at all

times. Nonetheless, we have been able to demonstrate

substantial performance benefits.

6. CONCLUSIONS

Web traffic increases, many solutions to improve web

performance have been proposed. The primary solution has

been the implementation of caching proxies that replicate

content to sites closer to the clients. However, simple

caching techniques are not adaptable for improving

performance of dynamic content delivery. This is due to the

difference between static and dynamic content.

Query cache will keep record of recently executed queries.

Query cache will also be responsible for keeping result of

recently executed queries. Query Cache technique is to store

Volume II Issue I, JAN, 2013 IJLTEMAS ISSN 2278 - 2540

27 | P a g e w w w . i j l t e m a s . i n

queries and their corresponding results. If similar query is

submitted by any other user the result will be obtained

using cache memory. . This memory will be used afterward

for answer the result of queries which has been earlier

performed by the users. The cache will maintain two state

valid and invalid state. When any query submitted by the

user, the cache memory is first examined to check whether

requested query is already store in the cache. If the query is

stored, then check the state is valid or invalid. If state is

valid then data can be access and if state is invalid then

data can’t be access. it will start searching the records

which meet the query criteria from onward to that index.

This can save lot of time and effort required to search the

large amount of data.

11. REFERENCES

7. REFERENCES

[1] J. Challenger, P. Dantzig, and A. Iyengar. A scalable

system for consistently caching dynamic web data. In

Proceedings of the 18th Annual Joint Conference of the

IEEE Computer and Communications Societies, New York,

New York, 1999.

[2] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh,H.

Woo, B. G. Lindsay, and J. F. Naughton. Middle-tier

database caching for e-business. In Proceedings of the 2002

ACM SIGMOD international conference on Management

of data, pages 600–611.ACM Press, 2002.

[3] Ideal Strategy to Improve Datawarehouse Performance

by Fahad Sultan & Dr. Abdul Aziz. (IJCSE)

International Journal on Computer Science and

Engineering Vol. 02, No. 02, 2010, 409-415

[4] Oracle. Oracle9i application server web caching. 2000.

[5] A. Labrinidis and N. Roussopoulos. WebView

materialization. pages 367–378, 2000.

[6] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D.

Agrawal. Enabling dynamic content caching for database-

driven web sites. In Proceedings of the 2001 ACM

SIGMOD international conference on Management of data,

pages 532–543. ACM Press, 2001.

[7] K. Yagoub, D. Florescu, V. Issarny, and P.

Valduriez.Caching strategies for data-intensive web sites.

In Proceedings of the 26th International Conference onVery

Large Databases, 2000.

[8] K. Rajamany. Multi-tier caching of dynamic content for

database-driven web sites. PhD thesis, Rice University,

Houston, Texas, 2000.

[9] MySQL. http://www.mysql.com.

[10] A. Iyengar and J. Challenger. Improving web server

performance by caching dynamic data. In USENIX

Symposium on Internet Technologies and Systems,1997.

[11] Efficient incremental view maintenance in data

warehouses. Ki Yong Lee, Jin HyunSon, Myoung Ho Kim.

Korea Advanced Institute of Science and Technology.

[12] Strategy to make superior Data ware house by Vishal

Gour in International Conference on advance computing

and creating entrepreneurs Feb2010.

http://www.mysql.com/

