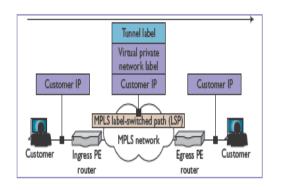
Multi-protocol label switching virtual private Networks

Prahlad Meghwal¹ (<u>prahlad1985eca@gmail.com</u>) Pacific University,Udaipur Mahendra kumar bairwa² (<u>mahendrabairwa84@gmail.com</u>) SITE,Nathwdara

ABSTRACT


The IP-based virtual private network (VPN) is rapidly becoming the foundation for the delivery of New World services, and many service providers are offering value-added applications on top of their VPN transport networks. Emerging services such as eapplication commerce, hosting, and multimedia applications will enable service providers to generate new incremental revenue and maintain long-term competitive advantage. Two unique and complementary VPN architectures based on IP Security (IPsec) and Multiprotocol Label Switching (MPLS) technologies are emerging to form the predominant foundations for delivery of

New World services. This white paper examines these two VPN architectures, their similarities and differences, and the benefits they offer. It concludes with a unified view of IP VPNs that combine both IPsec and MPLS based on their respective strengths. Multiprotocol Label Switching (MPLS) is an emerging technology which ensures the reliable delivery of the Internet services with high transmission speed and lower delays. The key feature of MPLS is its Traffic Engineering (TE) which is used for effectively managing the networks for efficient utilization of network resources. Due to lower network delay, efficient forwarding mechanism, scalability and predictable performance of the services provided by MPLS technology makes it more suitable for implementing real-time applications such as Voice and video.

MPLS ARCHITECTURE

Multiprotocol Label Switching (MPLS) is a tunneling technology used in many service provider networks [3]. The most popular MPLS-enabled application in use today is **IJLTEMAS**

the MPLS virtual private network. MPLS VPNs were developed to operate over MPLS networks, but they can also run over native IP networks. This offers providers flexibility in network deployment choices, improved routing system scalability and greater reach to customers. The key element is the ability to encapsulate MPLS packets in IP tunnels. In an MPLS network, each LSP is created over the best path selected by the IGP, towards the destination network. An IGP (OSPF or IS-IS) is used to propagate routing information to all routers in an MPLS domain to determine the best path to specific destination networks. Each hop within the network core forwards packet based on the label, not IP information, until the final label switch is reached where the label is discarded and normal IP forwarding resumes

Figure MPLS Tunneling Architecture

Overview of VPN Requirements

RFC 2764 defines a generic framework for IP-based VPNs, including the following requirements for a VPN solution.

- Opaque transport of data between VPN sites, because the customer may be using non-IP protocols or locally administered IP addresses that are not unique across the SP network.
- Security of VPN data transport to avoid misdirection, modification, spoofing or snooping of the customer data.
- QoS guarantees to meet the business requirements of the customer in terms of bandwidth, availability and latency.

In addition, the management model for IPbased VPNs must be sufficiently flexible to allow either the customer or the SP to manage a VPN. In the case where an SP allows one or more customers to manage their own VPNs, the SP must ensure that the management tools provide security against the actions of one customer adversely affecting the level of service provided to other customers

IJLTEMAS

Four types of VPN are defined in RFC 2764.

- □Virtual Leased Lines (VLL) • provide connection-oriented pointto-point links between customer sites. The customer perceives each VLL dedicated private as a (physical) link, although it is, in fact, provided by an IP tunnel across the backbone network The IP tunneling protocol used over a VLL must be capable of carrying any protocol that the customer uses between the sites connected by that VLL.
- Virtual Private LAN Segments (VPLS) provide an emulated LAN between the VPLS sites. As with VLLs, a VPLS VPN requires use of IP tunnels that are transparent to the protocols carried on the emulated LAN. The LAN may be emulated using a mesh of tunnels between the customer sites or by mapping each VPLS to a separate multicast IP address.
- Virtual Private Routed Networks (VPRNs) emulate a dedicated IPbased routed network between the customer sites. Although a VPRN carries IP traffic, it must be treated as a separate routing domain from the

underlying SP network, as the VPRN is likely to make use of non-unique customer-assigned IP addresses. Each customer network perceives itself as operating in isolation and disjoint from the Internet – it is, therefore, free to assign IP addresses in whatever manner it likes. These addresses must not be advertised outside the VPRN since they cannot be guaranteed to be unique more widely than the VPN itself.

Virtual Private Dial Networks (VPDNs) allow customers to outsource to the SP the provisioning and management of dial-in access to their networks. Instead of each customer setting up their own access servers and using PPP sessions between a central location and remote users, the SP provides a shared, or very many shared access servers. PPP sessions for each VPDN are tunneled from the SP access server to an access point into each customer's network, known as the access concentrator.

The last of these VPN types is providing a specialized form of access to a customer network. The IETF has specified the Layer 2 Tunneling Protocol (L2TP), which is

IJLTEMAS

explicitly designed to provide the authentication and multiplexing capabilities required for extending PPP sessions from a customer's L2TP Access Concentrator (LAC) to the SP's L2TP Network Server (LNS).

Elements of an MPLS VPN solution

Let us consider how MPLS can provide a VPN solution by examining how it would work at several different levels. We start with the data forwarding mechanics and work our way up to the network management considerations. Different implementation models for MPLS-based VPNs imply different interactions between these elements of a VPN solution. See the section *VPN Implementation Models* for further details.

• LSP Tunnels

The basis of any MPLS solution for VPNs is the use of LSP tunnels for forwarding data between SP edge routers that border on a given VPN. By labeling the VPN data as it enters such a tunnel, the LSR neatly segregates the VPN flows from the rest of the data flowing in the SP backbone.

 Multiple protocols on the VPN can be encapsulated by the tunnel ingress LSR since the data traversing an LSP tunnel is opaque to intermediate routers within the SP backbone.

- Multiplexing of traffic for different VPNs onto shared backbone links can be achieved by using separate LSP tunnels (and hence separate labels) for each data source.
- Authentication of the LSP tunnel endpoint is provided by the label distribution protocols. See the section *VPN Security* for more details.
- QoS for the VPN data can be assured by reserving network resources for the LSP tunnels. MPLS supports both Intserv and Diffserv.
- Protection switching and automatic re-routing of LSP tunnels ensure that failure of a link or router that affects a VPN can be corrected without management intervention. These protection mechanisms operate at several different levels, including refresh/keep-alive messages on a hop-by-hop basis within the label distribution protocols, re-routing of LSP tunnels, pre-provisioning of alternative routes, and wavelength failure detection and management for optical networks.

Why There Are Two VPN Architectures

The service goal of VPNs is to provide customer connectivity over a shared

business-critical

traffic remains confidential

infrastructure, with the same policies enjoyed in a private network. A VPN solution must therefore be secure from intrusion and tampering, deliver missioncritical data in a reliable and timely manner, and be manageable. The essential attributes of a VPN can be segmented into five broad categories (Table 1).

Table 1 Essential Attributes of a Virtual **Private Network**

111/4/01/01	**		
Scalability	Must be scalable across		via security mechanisms
	VPN platforms ranging		such as tunneling,
	from a small office		encryption, traffic
	configuration through the		separation, packet
	largest enterprise		authentication, user
	implementations		authentication, and access
	ubiquitously on a global		control.
	scale; the ability to adapt the		
	VPN to meet changing	Quality of	Ensures prioritization of
	bandwidth and connectivity	Service	mission-critical or delay-
	needs is crucial in a VPN		sensitive traffic and
	solution. Additionally, in		manages congestion across
	the fiercely competitive and		varying bandwidth rates.
	dynamic market		Quality of service (QoS)
	environment, large orders		functions such as queuing,
	can be won and must be		network congestion
	provisioned rapidly, hence		avoidance, traffic shaping,
	the VPN must be highly		and packet classification, as
	scalable in order to		well as VPN routing
	accommodate unplanned		services utilizing an optimal
	growth and changes driven		routing protocol.

by customer demand.

Ensures

Security

Manageability	Essential for cost-effective	
6 v	provisioning to enforce	
	security and QoS policies,	
	management and billing,	
	with advanced monitoring	
	and automated flow-through	
	systems to quickly roll out	
	new services and support	
	service-level agreements	
	(SLA).	
Reliability	For predictable and	
	extremely high service	
	availability that business	
	customers expect and	
	require.	

Comparison Between IPsec and MPLS-Based VPN

Table 2 describes the characteristics, benefits, positioning, and the differentiation between the IPsec and MPLS-based VPN.

Table 2 IPsec and MPLS-Based VPNComparison

Service	High-speed	Internet	services,
Models	business-qu	ality IP VPN s	services, e-
	commerce	and applicati	on-hosting
	services	High-speed	Internet

	services, business-quality IP VPN
	services, e-commerce and
	application-hosting services
Scalability	Large-scale deployment requires
	planning and coordination to address
	issues on key distribution, key
	management, and peering
	configuration Highly scalable since
	no site-to-site peering is required.
Place in	Best at the local loop, edge and off-
Network	net where there is a higher degree of
	exposure to data privacy and where
	IPsec security mechanisms such as
	tunneling and encryption can best be
	applied Best within a service
	provider's core network where QoS,
	traffic engineering, and bandwidth
	utilization can be fully controlled,
	especially if SLA or service-level
	guarantee (SLG) is to be offered as
	part of the VPN service
Transparen	IPsec VPN resides at the network
cy	layer; it is transparent to the
	applications MPLS VPN operates at
	the IP+ATM or IP environment; it is
	completely transparent to the
	applications
	In general, no network level
Provisioning	provisioning is required for managed
	CPE based service offering. When a
	networked based IPsec VPN service
	is deployed, service provider
	generally provides centralized
	provisioning and
	management support. Because MPLS

	VDN site means with a service
	VPN site peers with a service
	provider network only, service
	activation requires just a one-time
	provisioning at the customer edge
	(CE) and provider edge (PE) devices
	to enable the site to become a
	member of a MPLS VPN group.
Service	Fast time to market; can be deployed
Deployment	across any existing IP networks
	Requires participating network
	elements at the core and edge to be
	MPLS capable, such as during a
	network upgrade or when a new
	MPLS network must be deployed
Session	Each IPsec session must be
Authenticati	
on	authenticated via digital certificate or
	preshared key; packets that do not
	conform to the security policy are
	dropped VPN membership is
	determined by service providers—a
	provisioning function based on
	logical port and unique route
	descriptor; unauthorized access to a
	VPN group is denied by device
	configuration
Confidential	IPSec VPN provides data privacy
ity	through a flexible suite of encryption
	and tunneling mechanisms at the IP
	network-layer IMPLS architecture
	separates traffic between customers
	offering security in a manner similar
	to a trusted Frame Relay or ATM
	÷
	network environment

Quality	of	While the IPsec protocol does not
Service		address network reliability or QoS
		mechanisms, a Cisco IPsec VPN
		deployment can preserve packet
		classification for QoS within an
		IPsec tunnel A well-executed MPLS
		based VPN implementation provides
		scalable, robust QoS mechanism and
		traffic engineering capability
		enabling service providers to offer
		IP-based value-added services with
		guaranteed SLA compliance

REFERENCES

 Khan. F., "Traffic Engineering with Multipoint Label Switching". E.Tech, 04 pp.
 61-67, July 2004.

[2] Fang L.; Bita N.; Le R.; Miles J.,
"Interprovider IP- MPLS services: requirements, implementations, and Challenges". Communications Magazine, IEEE, vol.43, no.6, pp.119-128, June 2005.

[3] Daugherty B.; Metz C.," Multiprotocol label Switching and IP, Part1: MPLS VPNs over IP Tunnels". IEEE Internet Computing, pp. 68-72, May-June 2005.

[4] Azher I.; Aurengzeb M.; Masood K.," Virtual Private Network Implementation over Multiprotocol Label Switching".

Engineering Sciences and Technology, pp. 1-5, Aug 2005.

[5] Shah. S. A. A.; Ahmed. L.,"MPLSFeasibility for General & Core IP Networksusing Open Source System". SecondInternational on Electrical Engineering, pp.1-6, March 2008.

[6] D. Awduche, J. Malcolm, J. Agogbua,M. O'Dell and J. McManus, "Requirementsfor Traffic Engineeringover MPLS", RFC2702, Sept. 1999.

[7] D. Awduche, L. Berger, D. Gan, T. Li,

G. Swallow and V. Srinivasan, "Extension

to RSVP for Traffic Engineering", Internet draft 1999