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Abstract—In the computational complexity theory, Clique 

Cover is a graph-theoretical NP-complete problem. It has 

applications in diverse fields such as compiler optimization 

[Rajagopalan et al. 2000], computational geometry [Agarwal et 

al. 1994], and applied statistics [Piepho 2004; Gramm et al. 2007]. 

In this paper we have implemented some data reduction rules to 

reduce the problem set and then applied search tree algorithm to 

these reduced data sets to find the optimal solution in polynomial 

time complexity. 

 

I. INTRODUCTION 

 

he problem of CLIQUE COVER is also known as 

KEYWORD CONFLICT problem [Kellerman1973] or 

COVERING BY CLIQUES problem (GT17) or 

INTERSECTION GRAPH BASIS (GT59) problem [Garey 

and Johnson 1979].Clique Cover is a graph-theoretical NP-

complete problem in the computational complexity theory, 

along with the other hard problems such as Knapsack packing, 

graph coloring, Hamiltonian path, vertex cover, N-puzzle, 3-

SAT, and famous Traveling salesman problem. Exponential 

algorithm is the best algorithm till now, although many 

heuristic algorithms give us reasonably good approximations 

of the optimal solutions. In the process of finding solution, 

approximated to optimal, the polynomial time data reduction 

techniques are very handy in reducing the problem state to 

smaller instances without sacrificing the possibility of finding 

optimal solution in reasonable time. For such reduced 

instances then often exhaustive search algorithms can be 

applied to efficiently find optimal solutions. NP-completeness 

is thought of as a class in which if one of such problems is 

solved to a polynomial time, all instances of NP-complete 

problems are reducible to a polynomial time. Then, it will be a 

very helpful in solving some very complex problems and can 

also be used in various applications.  

 

1.1 Problem Description 

A clique in an undirected graph G = (V, E) is a set C of 

 
 

vertices such that for any two vertices in C, there is an edge 

connecting the two.  

We will also use “clique” to refer to the complete subgraph  

 

of G induced by C and assume that the exact meaning will 

be made clear from context. The mathematical definition can 

be written as; 

Given a graph G = (V, E) and an integer k, a clique is a 

subset U of V with |U | ³ k such that every pair of vertices in U 

is joined by an edge. Then, we call U a k-clique of the graph 

G.  

Formally, as a (parameterized) decision problem, CLIQUE 

COVER is defined as follows:   

Input: An undirected graph G = (V, E) and an integer k ≥ 

0.  

Question: Is there a set of at most k cliques in G such that 

each edge in E has both its endpoints in at least one of the 

selected cliques?  

 

1.2 Definitions 

The definitions used in the report are as follow: 

Parameterised Problem: An instance of a parameterized 

problem consists of a problem instance I and a parameter k 

being a nonnegative integer. 

 

Fixed Parameter Tractability:  A parameterized problem 

is fixed-parameter tractable if it can be solved in f (k) · |I | O 

(1) time, where f is a computable function solely depending on 

the parameter k, not on the input size |I |.  

Problem Kernel:  A parameterized problem such as 

CLIQUE COVER (the parameter is k) is said to have a 

problem kernel if, after the application of the reduction rules, 

the reduced instance has size f (k) for a function f depending 

only on k. It is a well-known result from parameterized 

complexity theory that a parameterized problem is fixed-

parameter tractable if and only if it admits a problem kernel 

[Cai et al. 1997]. 

 

1.3 Applications of Clique Cover Problem 

Like instances of other graph problems, finding a maximum 

clique problem (or decision problem - is there a clique in a 

graph) can be widely seen in numerous fields of science and 
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engineering applications, even business application. For 

example, DNA molecular solution problem, data partitioning 

problem in embedded processor-based systems (memory 

chips), matching points problem in information systems, 

imaging process problem to remote sensing and astrophysics, 

and thousands more.  

Applications of the vertex cover problem arise in network 

security; scheduling and VLSI design .Some practical 

examples are as follow: 

(i) Finding a clique cover in a network corresponds to 

locating an optimal set of nodes on which to strategically 

place controllers such that they can monitor the data going 

through every link in the network.  

(ii) Algorithms for clique cover can also be used to solve 

the closely related problem of finding a maximum clique, 

which has a range of applications in biology, such as 

identifying related protein sequences. 

 

II. ALGORITHMS 

The algorithm for finding a k-clique in an undirected graph 

is highly parallel and represents a class of solving NP-

complete search problems. The algorithm seems simple - 

systematically list all possible sets of exactly k nodes and for 

each such set, check whether all pairs are neighbours in a 

selected sub-graph. However, this brute force algorithm to 

find a clique in a graph is unfortunately a historically hard 

problem, NP-complete. The algorithm is polynomial if k is 

constant, but not if k varies. A better one can be done by 

starting with each node as a clique of one, and to merge 

cliques into larger cliques until there are no more possible 

merges to check. Two cliques A and B may be merged if each 

node in clique A is joined to each node in clique B. For the 

former method of finding clique, as you expected, a searching 

tree of a clique problem is spreading exponentially although it 

depends strongly on a structure of a graph. To reduce the 

problem set some data reduction rules are applied   through 

backtracking and then by using search tree algorithm 

approximate solution to optimal solution is finding in 

reasonable time. 

 

2.1 Data Reduction Rules 

A data reduction rule replaces a Clique Cover instance by a 

simpler instance, such that the solution to the original instance 

can be reconstructed from the solution of the simpler instance. 

These rules replaces, in polynomial time, a given Clique 

Cover instance (G, k) consisting of a graph G and a 

nonnegative integer k by a “simpler” instance (G', k') such that 

(G, k) has a solution if and only if (G', k') has a solution. Rules 

can be described as follow: 

 

2.1.1 Reduction Rules 

Before applying the rules some initializing process are 

done. We inspect every edge {u, v} of the original graph. We 

use two auxiliary variables: We compute a set N {u, v} of u 

and v’s common neighbours and determine whether the 

vertices in N {u,v} induce a clique. More precisely, we 

compute a positive integer c {u,v} , which denotes the number 

of edges interconnecting the vertices of N{u,v} . After 

initialization process reduction rules as follow are applied. 

Rule 1:  Remove isolated vertices and vertices that are only 

adjacent to covered edges. This is executed in O (VE) time 

complexity. 

Rule 2:   If an edge {u, v} is  contained only in exactly one  

maximal clique C, then add C to  the solution, mark its edges 

as  covered, and decrease k by one. 

 
Figure 2.1: Reduction Rule 2 

Rule 3:    If there is an edge {u, v} whose endpoints have 

exactly the same closed neighborhood, that is, N [u] = N [v], 

then mark all edges incident to u as covered. To reconstruct a 

solution for the unreduced instance, add u to every clique 

containing v.  

Rule 4:  If all the neighbours of vertex v, x with N(x) \ N (v 

) = ø  have at least one vertex p such that  N(p) ⊆ N(v ), then 

delete v. 

 
Figure 2.2: Reduction Rule 4 

 

2.2 Search Tree Algorithm 

In the process of finding optimal solution for our problem, 

search tree algorithm is applied on the reduced data set that we 

get on applying data reduction rules on the problem set.  

In search tree algorithm we first choose an uncovered edge 

e є E .Then for each maximal clique C that contains e, mark 

all edges in C as covered, decrease k by one, and call the 

algorithm recursively.  

This exhaustive algorithm can solve all instances in a 

benchmark from applied statistics within a second (up to 124 

vertices and 4847 edges) and can solve sparse instances with 

hundreds of vertices and tens of thousands of edges within 

minutes. 

 

2.3 Backtracking based Solution  

To find the solution of Clique Cover problem we integrate 

backtracking with the data reduction and search tree 

algorithm. 

Backtracking based solution can be applied with two 

variations such as: 

(i) Permutated all possible sub-graphs and checks if every 

node in a sub-graph is connected to every other node in that 

sub-graph and the size of clique is equal to k.  
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Figure: 2.3 

 

(ii) Permutated only sub-graphs in which every node in a 

sub-graph is connected to every other nodes in that sub-graph, 

and check if the size of clique is equal to k. In this manner, 

cutoffs occur in pruning.  

 
Figure 2.4 

III. SOFTWARE WORK BENCH DESCRIPTION 

 

3.1 Graphical User Interface 

The GUI of the workbench is shown in Figure 3.1. Various 

options shown are described below: 

Size: This field is used to provide size of the clique by user. 

Nodes: This field is used to give the number of nodes by 

user from which the graph is generated. 

Generate Graph: By clicking this button the graph will be 

generated on the canvas from the number of nodes used in 

Nodes field and the random file provided by the user. 

Generate Solution: By clicking this button our algorithm 

will run and generate the cliques for given nodes and for given 

random file which is shown on the canvas.  

 
Figure 3.1 GUI for Clique Cover 

The canvas represented in green in Figure 3.1 is used to 

show the graph generated with the given number of nodes and 

the random file generated from random file generator. Text 

area is used to show the result of the solution generated. Graph 

generation is shown in Figure 3.2. In Figure 3.3 generation of 

all possible cliques of given size is represented. 

 
Figure 3.2 Graph generation for 9 Nodes 

 
Figure 3.3 Cliques of size 6 for graph with 9 nodes 

 

In Figure 3.3 on the canvas generated cliques are displayed 

by BLACK edges and the edges that are not the part of the 

solutions are displayed by PINK color. In the Text Area result 

is shown for 9 node graph with clique size 6. First line shows 

the total number of vertices , second line displays total edges 

in the graph, this list is provided by the user generated from 

random graph generator and saved in data_n.txt in the same 

directory. For the purpose of generating clique’s vertices that 

are the part of the cliques is saved in file name myfilen.txt. 

This is automatically generated file and generated differently 

as it takes n from Nodes field and generate file at run time. 

Solution of our problem exist when all the edges in E of 

graph G(V,E) are the part of cliques. In Figure 3.3 we get 

some edges displayed in pink means that are not the part of 

our solution. In Figure 3.4 we generate cliques of size 5 with 

9 nodes and in Figure 3.5 we generate it for size 4.  
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Figure 3.4 Cliques of size 5 for 9 nodes 

 
Figure 3.5 Cliques of size 4 for 9 nodes 

In Figure 3.4 we get one edge spare which is not in our 

solution, but in Figure 3.5 for clique size of 4 we get all the 

edges for graph G(V,E) in our solution space. For 9 nodes we 

get 65 cliques of size 4 as our solution. For graph having 5 

vertices we get 7 cliques of size 2 as our solution as for size 3 

two edges spare for being a part  of solution, which is shown 

in Figure 3.6 .In Figure 3.7 solution for clique size 2 is 

displayed. 

 
Figure 3.6 Cliques of size 3 for 5 nodes 

 

 
Figure 3.7 Cliques of size 2 for 5 nodes 

 

 

 

 

3.2 Class Diagram and Description 

The main class which provides the GUI front end is the 

CliqueDisplay. Figure 3.8 shows the class diagram of Clique, 

which is important class to generate solution for clique cover 

problem. 

 

Figure 3.8 Clique Class Diagram 

 

Figure 3.9 represents the class diagram for main class that 

represents our graphics user interface. 
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Figure 3.9 Class diagram for GUI 

 

 

 

3.3 Sub Diagram for Clique Cover User Interface 

Apart from the GUI class some package diagrams are 

displayed in Figure 3.10 

 
 

Figure 3.10 Package Diagram 

 
Figure 3.11 Component Diagram 

 

Figure 3.11 shows connectivity between various 

components of swing package. Swing is the java extension 

used to make user interfaces. It's simpler to use than AWT, 

which is part of its appeal, and have a lot of neat things pre-

defined. 

 

IV. RESULTS AND DESCRIPTION 

For the purpose of comparison we consider the following 

algorithms-  

 

4.1 Kouakou Algorithm:  

If an on-line algorithm LA guarantees the competitive ratio 

CLA for the minimum clique cover problem, then its 

corresponding algorithm b-LA, for b-LCC, guarantees the 

competitive ratio CLA / 1+CLA 

Let us consider Algorithm b-LA solving b-LCC. Let Ns be 

the number of saturated cliques returned by b-LA and Nu the 

number of unsaturated cliques. Then, the total number λb (G) 

of cliques returned by b-LA satisfies:  

λb (G) = Ns + Nu        ……… (1) 

Let denote by χb (G) (resp. λ(G)) the optimal value for the 

b-clique cover problem (resp. the number of cliques returned 

by LA for LLC). χb (G) can also be defined as the b-bounded 

co- chromatic number. Then, we have Nu ≤ λ(G) and Ns ≤ χb 

(G). Moreover, relation (1) implies  

λb (G) ≤ χb (G) + λ(G) ≤ χb (G) +1/CLA * k(G),  

where the last inequality of expression (2) holds since LA is 

CLA -competitif. Let us also note that, for a given instance 

graph G, every solution of b-LLC is a feasible solution of 

LLC. Therefore, as they are minimization problems, we have 

k(G) ≤ χb (G). Relation (2) becomes: 

λb (G) ≤ χb (G) + CLA *χb (G) 

 

4.1.1 Hardness Result  

The algorithm considers an interval graph G = (V, E) of 

which the n vertices will be revealed (one-by-one) as it 

progress with the resolution. The algorithm can be thinking of 



       Volume II Issue II, FEB, 2013                       IJLTEMAS                                           ISSN 2278 - 2540 
 

107 | P a g e                                                                                                                                                  ww.ijltemas.in 

 

like an on-line problem as a game between two players. One 

player, the adversary, generates requests on-line according to 

some specified mechanism and is charged a cost for its 

selections according to some specified rules. For example, for 

a minimization problem, the adversary is charged the 

minimum (off-line) cost to perform any request sequence it 

generates. The other player is the algorithm, which responds to 

requests by making a decision, and incurs some total cost over 

the course of the game. In the model, the adversary has 

complete knowledge of the algorithm and it can first decide 

how many requests it wants to generate; then, it internally 

simulates the algorithm on each possible sequence of that 

length to find the sequence that maximizes the ratio between 

the on-line algorithm’s cost and the adversary’s cost. The 

algorithm  emphasize that, as we deal with a minimization 

problem, the adversary’s goal is to maximize the ratio of the 

algorithm’s cost to the adversary’s cost, while the on-line 

algorithm’s goal is to minimize it.                

 

4.2 Running time of Backtracking based solution     

The measurements are made in two ways that the 

environmental variables are controlled alternatively. For each 

environmental variable, the running time is measured upon 

various different graphs. 

System Summary: Intel Pentium D 2.80GHz with 4Mb L2 

Cache, 1.5 Gb RAM. 

The number of edges is fixed to 4000, and the running time 

is measured upon different graph size - the number of vertices 

in a graph varies. For a certain range of vertices, the running 

time is moderately increasing in polynomial behavior.  

Specifically, in the Figure 4.1, when the number of vertices 

lies in the range of 0 to 220, the running time obeys a 

polynomial behavior. However, if the number of vertices 

exceeds about 220, the running time increases with an 

astronomical growth rate. Although we can’t see in the plot, 

the running time will probably increase with a polynomial 

growth rate again up to the point where the number of vertices 

reaches about 4100. Then, after that point, it will jump with 

another astronomical growth rate. To visualize, the asymptotic 

behavior may have a stair-like-shape: switching a polynomial 

growth and a vertical growth alternatively, having a certain 

amount of term. This is because although the k-clique 

algorithm looks like a polynomial algorithm, it actually takes 

an exponential time, depending on the value of k. 

 

Figure 4.1 Graph between run time and number of nodes 

 

Indeed, we can be convinced if we notice that the “critical” 

points such as 220, 4000, etc are the numbers of vertices 

which change the size of clique, from 4 to 5 and 5 to 6, 

respectively. Thus, the asymptotic behavior obeys O(nk) 

worst-case time complexity, where k = O(log n) in this 

particular instance of the problem.  

 

Figure 4.2 Graph between run time and number of nodes 

 

In Figure 4.2, the number of vertices is fixed to 4000, and 

the running time is measured on different graph density – the 

number of edges in a graph varies. In this case, since the 

number of vertices is fixed to 4000, the value of k is also fixed 

to 4. Thus, as we expect, the running time increases in a 

polynomial time. In fact, a polynomial of degree of 4 is used 

for the best-fit curve, and it reasonably fits the data. Therefore, 

the time complexity is O(n4) in the worst-case.  

This does not end the beauty of mathematics where the 

Figure 4.3 will make the revealing of the fact that  as the “k” 

grows the complexity grows but at the time n/2 is reached the 

time the complexity is maximum and after that it decrease 

because the value of  nCk  starts decreasing. 

To conclude, even though the k-clique algorithm using 

backtracking may depend strongly on the structure of a graph, 

it still has the time complexity of O(nk) in the worst-case, 

where the size of clique, k, is a variable. (Where n can be 

either the number of vertices or edges since either one of them 

can be interchangeably expressed as a function with respect to 
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the other). Thus, it is an exponential algorithm, which is NP-

complete.        

 
Figure 4.3 Performance vs clique size 

 

V. CONCLUSION AND FUTURE WORKS 

The implementation of Clique Cover problem using 

backtracking depends strongly on the structure of a graph, it 

still has the time complexity of O(nk) in the worst-case, where 

the size of clique, k, is a variable and  n can be either the 

number of vertices or edges since either one of them can be 

interchangeably expressed as a function with respect to the 

other. Thus, it is an exponential algorithm, which is NP-

complete. 

The backtracking based solution is compared with Kouakou 

algorithm which works fine only up to 200-300 nodes but 

takes exponential time for higher number of nodes. Whereas 

our algorithm works fine upto 4000 and higher number of 

nodes.   

In this paper Clique Cover problem is solved by 

backtracking method in which we consider a problem instance 

at a time. Parallel algorithms can be used to make the 

algorithm run faster. By applying parallel algorithms several 

problem instances will be considered simultaneously which 

can reduce the run time of the algorithm to a great extent.  
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