
 Volume II Issue II, FEB, 2013 IJLTEMAS ISSN 2278 - 2540

102 | P a g e ww.ijltemas.in



Abstract—In the computational complexity theory, Clique

Cover is a graph-theoretical NP-complete problem. It has

applications in diverse fields such as compiler optimization

[Rajagopalan et al. 2000], computational geometry [Agarwal et

al. 1994], and applied statistics [Piepho 2004; Gramm et al. 2007].

In this paper we have implemented some data reduction rules to

reduce the problem set and then applied search tree algorithm to

these reduced data sets to find the optimal solution in polynomial

time complexity.

I. INTRODUCTION

he problem of CLIQUE COVER is also known as

KEYWORD CONFLICT problem [Kellerman1973] or

COVERING BY CLIQUES problem (GT17) or

INTERSECTION GRAPH BASIS (GT59) problem [Garey

and Johnson 1979].Clique Cover is a graph-theoretical NP-

complete problem in the computational complexity theory,

along with the other hard problems such as Knapsack packing,

graph coloring, Hamiltonian path, vertex cover, N-puzzle, 3-

SAT, and famous Traveling salesman problem. Exponential

algorithm is the best algorithm till now, although many

heuristic algorithms give us reasonably good approximations

of the optimal solutions. In the process of finding solution,

approximated to optimal, the polynomial time data reduction

techniques are very handy in reducing the problem state to

smaller instances without sacrificing the possibility of finding

optimal solution in reasonable time. For such reduced

instances then often exhaustive search algorithms can be

applied to efficiently find optimal solutions. NP-completeness

is thought of as a class in which if one of such problems is

solved to a polynomial time, all instances of NP-complete

problems are reducible to a polynomial time. Then, it will be a

very helpful in solving some very complex problems and can

also be used in various applications.

1.1 Problem Description

A clique in an undirected graph G = (V, E) is a set C of

vertices such that for any two vertices in C, there is an edge

connecting the two.

We will also use “clique” to refer to the complete subgraph

of G induced by C and assume that the exact meaning will

be made clear from context. The mathematical definition can

be written as;

Given a graph G = (V, E) and an integer k, a clique is a

subset U of V with |U | ³ k such that every pair of vertices in U

is joined by an edge. Then, we call U a k-clique of the graph

G.

Formally, as a (parameterized) decision problem, CLIQUE

COVER is defined as follows:

Input: An undirected graph G = (V, E) and an integer k ≥

0.

Question: Is there a set of at most k cliques in G such that

each edge in E has both its endpoints in at least one of the

selected cliques?

1.2 Definitions

The definitions used in the report are as follow:

Parameterised Problem: An instance of a parameterized

problem consists of a problem instance I and a parameter k

being a nonnegative integer.

Fixed Parameter Tractability: A parameterized problem

is fixed-parameter tractable if it can be solved in f (k) · |I | O

(1) time, where f is a computable function solely depending on

the parameter k, not on the input size |I |.

Problem Kernel: A parameterized problem such as

CLIQUE COVER (the parameter is k) is said to have a

problem kernel if, after the application of the reduction rules,

the reduced instance has size f (k) for a function f depending

only on k. It is a well-known result from parameterized

complexity theory that a parameterized problem is fixed-

parameter tractable if and only if it admits a problem kernel

[Cai et al. 1997].

1.3 Applications of Clique Cover Problem

Like instances of other graph problems, finding a maximum

clique problem (or decision problem - is there a clique in a

graph) can be widely seen in numerous fields of science and

Data Reduction and Exact Algorithm for Clique

Cover

I. Anu
1
 II. JAYA PRIYADARSHNI

2
 III. Bhavanesh Sharma

3
 IV. Hansha Rani Gupta

3

1,2&3Assistant Prof. , EE, Institute of Engineering and Technology, Alwar (Rajasthan)

4Assistant Prof. , EC, Alwar Institute of Engineering and Technology, Alwar (Rajasthan)

Email: anushreya17@gmail.com1 jayapriyadarshni12@gmail.com2

bhavaneshsharma2009@gmail.com3 hansaranigupta@gmail.com4

T

mailto:anushreya17@gmail.com1
mailto:jayapriyadarshni12@gmail.com2
mailto:bhavaneshsharma2009@gmail.com3
mailto:2%20hansaranigupta@gmail.com

 Volume II Issue II, FEB, 2013 IJLTEMAS ISSN 2278 - 2540

103 | P a g e ww.ijltemas.in

engineering applications, even business application. For

example, DNA molecular solution problem, data partitioning

problem in embedded processor-based systems (memory

chips), matching points problem in information systems,

imaging process problem to remote sensing and astrophysics,

and thousands more.

Applications of the vertex cover problem arise in network

security; scheduling and VLSI design .Some practical

examples are as follow:

(i) Finding a clique cover in a network corresponds to

locating an optimal set of nodes on which to strategically

place controllers such that they can monitor the data going

through every link in the network.

(ii) Algorithms for clique cover can also be used to solve

the closely related problem of finding a maximum clique,

which has a range of applications in biology, such as

identifying related protein sequences.

II. ALGORITHMS

The algorithm for finding a k-clique in an undirected graph

is highly parallel and represents a class of solving NP-

complete search problems. The algorithm seems simple -

systematically list all possible sets of exactly k nodes and for

each such set, check whether all pairs are neighbours in a

selected sub-graph. However, this brute force algorithm to

find a clique in a graph is unfortunately a historically hard

problem, NP-complete. The algorithm is polynomial if k is

constant, but not if k varies. A better one can be done by

starting with each node as a clique of one, and to merge

cliques into larger cliques until there are no more possible

merges to check. Two cliques A and B may be merged if each

node in clique A is joined to each node in clique B. For the

former method of finding clique, as you expected, a searching

tree of a clique problem is spreading exponentially although it

depends strongly on a structure of a graph. To reduce the

problem set some data reduction rules are applied through

backtracking and then by using search tree algorithm

approximate solution to optimal solution is finding in

reasonable time.

2.1 Data Reduction Rules

A data reduction rule replaces a Clique Cover instance by a

simpler instance, such that the solution to the original instance

can be reconstructed from the solution of the simpler instance.

These rules replaces, in polynomial time, a given Clique

Cover instance (G, k) consisting of a graph G and a

nonnegative integer k by a “simpler” instance (G', k') such that

(G, k) has a solution if and only if (G', k') has a solution. Rules

can be described as follow:

2.1.1 Reduction Rules

Before applying the rules some initializing process are

done. We inspect every edge {u, v} of the original graph. We

use two auxiliary variables: We compute a set N {u, v} of u

and v’s common neighbours and determine whether the

vertices in N {u,v} induce a clique. More precisely, we

compute a positive integer c {u,v} , which denotes the number

of edges interconnecting the vertices of N{u,v} . After

initialization process reduction rules as follow are applied.

Rule 1: Remove isolated vertices and vertices that are only

adjacent to covered edges. This is executed in O (VE) time

complexity.

Rule 2: If an edge {u, v} is contained only in exactly one

maximal clique C, then add C to the solution, mark its edges

as covered, and decrease k by one.

Figure 2.1: Reduction Rule 2

Rule 3: If there is an edge {u, v} whose endpoints have

exactly the same closed neighborhood, that is, N [u] = N [v],

then mark all edges incident to u as covered. To reconstruct a

solution for the unreduced instance, add u to every clique

containing v.

Rule 4: If all the neighbours of vertex v, x with N(x) \ N (v

) = ø have at least one vertex p such that N(p) ⊆ N(v), then

delete v.

Figure 2.2: Reduction Rule 4

2.2 Search Tree Algorithm

In the process of finding optimal solution for our problem,

search tree algorithm is applied on the reduced data set that we

get on applying data reduction rules on the problem set.

In search tree algorithm we first choose an uncovered edge

e є E .Then for each maximal clique C that contains e, mark

all edges in C as covered, decrease k by one, and call the

algorithm recursively.

This exhaustive algorithm can solve all instances in a

benchmark from applied statistics within a second (up to 124

vertices and 4847 edges) and can solve sparse instances with

hundreds of vertices and tens of thousands of edges within

minutes.

2.3 Backtracking based Solution

To find the solution of Clique Cover problem we integrate

backtracking with the data reduction and search tree

algorithm.

Backtracking based solution can be applied with two

variations such as:

(i) Permutated all possible sub-graphs and checks if every

node in a sub-graph is connected to every other node in that

sub-graph and the size of clique is equal to k.

 Volume II Issue II, FEB, 2013 IJLTEMAS ISSN 2278 - 2540

104 | P a g e ww.ijltemas.in

Figure: 2.3

(ii) Permutated only sub-graphs in which every node in a

sub-graph is connected to every other nodes in that sub-graph,

and check if the size of clique is equal to k. In this manner,

cutoffs occur in pruning.

Figure 2.4

III. SOFTWARE WORK BENCH DESCRIPTION

3.1 Graphical User Interface

The GUI of the workbench is shown in Figure 3.1. Various

options shown are described below:

Size: This field is used to provide size of the clique by user.

Nodes: This field is used to give the number of nodes by

user from which the graph is generated.

Generate Graph: By clicking this button the graph will be

generated on the canvas from the number of nodes used in

Nodes field and the random file provided by the user.

Generate Solution: By clicking this button our algorithm

will run and generate the cliques for given nodes and for given

random file which is shown on the canvas.

Figure 3.1 GUI for Clique Cover

The canvas represented in green in Figure 3.1 is used to

show the graph generated with the given number of nodes and

the random file generated from random file generator. Text

area is used to show the result of the solution generated. Graph

generation is shown in Figure 3.2. In Figure 3.3 generation of

all possible cliques of given size is represented.

Figure 3.2 Graph generation for 9 Nodes

Figure 3.3 Cliques of size 6 for graph with 9 nodes

In Figure 3.3 on the canvas generated cliques are displayed

by BLACK edges and the edges that are not the part of the

solutions are displayed by PINK color. In the Text Area result

is shown for 9 node graph with clique size 6. First line shows

the total number of vertices , second line displays total edges

in the graph, this list is provided by the user generated from

random graph generator and saved in data_n.txt in the same

directory. For the purpose of generating clique’s vertices that

are the part of the cliques is saved in file name myfilen.txt.

This is automatically generated file and generated differently

as it takes n from Nodes field and generate file at run time.

Solution of our problem exist when all the edges in E of

graph G(V,E) are the part of cliques. In Figure 3.3 we get

some edges displayed in pink means that are not the part of

our solution. In Figure 3.4 we generate cliques of size 5 with

9 nodes and in Figure 3.5 we generate it for size 4.

 Volume II Issue II, FEB, 2013 IJLTEMAS ISSN 2278 - 2540

105 | P a g e ww.ijltemas.in

Figure 3.4 Cliques of size 5 for 9 nodes

Figure 3.5 Cliques of size 4 for 9 nodes

In Figure 3.4 we get one edge spare which is not in our

solution, but in Figure 3.5 for clique size of 4 we get all the

edges for graph G(V,E) in our solution space. For 9 nodes we

get 65 cliques of size 4 as our solution. For graph having 5

vertices we get 7 cliques of size 2 as our solution as for size 3

two edges spare for being a part of solution, which is shown

in Figure 3.6 .In Figure 3.7 solution for clique size 2 is

displayed.

Figure 3.6 Cliques of size 3 for 5 nodes

Figure 3.7 Cliques of size 2 for 5 nodes

3.2 Class Diagram and Description

The main class which provides the GUI front end is the

CliqueDisplay. Figure 3.8 shows the class diagram of Clique,

which is important class to generate solution for clique cover

problem.

Figure 3.8 Clique Class Diagram

Figure 3.9 represents the class diagram for main class that

represents our graphics user interface.

 Volume II Issue II, FEB, 2013 IJLTEMAS ISSN 2278 - 2540

106 | P a g e ww.ijltemas.in

Figure 3.9 Class diagram for GUI

3.3 Sub Diagram for Clique Cover User Interface

Apart from the GUI class some package diagrams are

displayed in Figure 3.10

Figure 3.10 Package Diagram

Figure 3.11 Component Diagram

Figure 3.11 shows connectivity between various

components of swing package. Swing is the java extension

used to make user interfaces. It's simpler to use than AWT,

which is part of its appeal, and have a lot of neat things pre-

defined.

IV. RESULTS AND DESCRIPTION

For the purpose of comparison we consider the following

algorithms-

4.1 Kouakou Algorithm:

If an on-line algorithm LA guarantees the competitive ratio

CLA for the minimum clique cover problem, then its

corresponding algorithm b-LA, for b-LCC, guarantees the

competitive ratio CLA / 1+CLA

Let us consider Algorithm b-LA solving b-LCC. Let Ns be

the number of saturated cliques returned by b-LA and Nu the

number of unsaturated cliques. Then, the total number λb (G)

of cliques returned by b-LA satisfies:

λb (G) = Ns + Nu ……… (1)

Let denote by χb (G) (resp. λ(G)) the optimal value for the

b-clique cover problem (resp. the number of cliques returned

by LA for LLC). χb (G) can also be defined as the b-bounded

co- chromatic number. Then, we have Nu ≤ λ(G) and Ns ≤ χb

(G). Moreover, relation (1) implies

λb (G) ≤ χb (G) + λ(G) ≤ χb (G) +1/CLA * k(G),

where the last inequality of expression (2) holds since LA is

CLA -competitif. Let us also note that, for a given instance

graph G, every solution of b-LLC is a feasible solution of

LLC. Therefore, as they are minimization problems, we have

k(G) ≤ χb (G). Relation (2) becomes:

λb (G) ≤ χb (G) + CLA *χb (G)

4.1.1 Hardness Result

The algorithm considers an interval graph G = (V, E) of

which the n vertices will be revealed (one-by-one) as it

progress with the resolution. The algorithm can be thinking of

 Volume II Issue II, FEB, 2013 IJLTEMAS ISSN 2278 - 2540

107 | P a g e ww.ijltemas.in

like an on-line problem as a game between two players. One

player, the adversary, generates requests on-line according to

some specified mechanism and is charged a cost for its

selections according to some specified rules. For example, for

a minimization problem, the adversary is charged the

minimum (off-line) cost to perform any request sequence it

generates. The other player is the algorithm, which responds to

requests by making a decision, and incurs some total cost over

the course of the game. In the model, the adversary has

complete knowledge of the algorithm and it can first decide

how many requests it wants to generate; then, it internally

simulates the algorithm on each possible sequence of that

length to find the sequence that maximizes the ratio between

the on-line algorithm’s cost and the adversary’s cost. The

algorithm emphasize that, as we deal with a minimization

problem, the adversary’s goal is to maximize the ratio of the

algorithm’s cost to the adversary’s cost, while the on-line

algorithm’s goal is to minimize it.

4.2 Running time of Backtracking based solution

The measurements are made in two ways that the

environmental variables are controlled alternatively. For each

environmental variable, the running time is measured upon

various different graphs.

System Summary: Intel Pentium D 2.80GHz with 4Mb L2

Cache, 1.5 Gb RAM.

The number of edges is fixed to 4000, and the running time

is measured upon different graph size - the number of vertices

in a graph varies. For a certain range of vertices, the running

time is moderately increasing in polynomial behavior.

Specifically, in the Figure 4.1, when the number of vertices

lies in the range of 0 to 220, the running time obeys a

polynomial behavior. However, if the number of vertices

exceeds about 220, the running time increases with an

astronomical growth rate. Although we can’t see in the plot,

the running time will probably increase with a polynomial

growth rate again up to the point where the number of vertices

reaches about 4100. Then, after that point, it will jump with

another astronomical growth rate. To visualize, the asymptotic

behavior may have a stair-like-shape: switching a polynomial

growth and a vertical growth alternatively, having a certain

amount of term. This is because although the k-clique

algorithm looks like a polynomial algorithm, it actually takes

an exponential time, depending on the value of k.

Figure 4.1 Graph between run time and number of nodes

Indeed, we can be convinced if we notice that the “critical”

points such as 220, 4000, etc are the numbers of vertices

which change the size of clique, from 4 to 5 and 5 to 6,

respectively. Thus, the asymptotic behavior obeys O(nk)

worst-case time complexity, where k = O(log n) in this

particular instance of the problem.

Figure 4.2 Graph between run time and number of nodes

In Figure 4.2, the number of vertices is fixed to 4000, and

the running time is measured on different graph density – the

number of edges in a graph varies. In this case, since the

number of vertices is fixed to 4000, the value of k is also fixed

to 4. Thus, as we expect, the running time increases in a

polynomial time. In fact, a polynomial of degree of 4 is used

for the best-fit curve, and it reasonably fits the data. Therefore,

the time complexity is O(n4) in the worst-case.

This does not end the beauty of mathematics where the

Figure 4.3 will make the revealing of the fact that as the “k”

grows the complexity grows but at the time n/2 is reached the

time the complexity is maximum and after that it decrease

because the value of nCk starts decreasing.

To conclude, even though the k-clique algorithm using

backtracking may depend strongly on the structure of a graph,

it still has the time complexity of O(nk) in the worst-case,

where the size of clique, k, is a variable. (Where n can be

either the number of vertices or edges since either one of them

can be interchangeably expressed as a function with respect to

 Volume II Issue II, FEB, 2013 IJLTEMAS ISSN 2278 - 2540

108 | P a g e ww.ijltemas.in

the other). Thus, it is an exponential algorithm, which is NP-

complete.

Figure 4.3 Performance vs clique size

V. CONCLUSION AND FUTURE WORKS

The implementation of Clique Cover problem using

backtracking depends strongly on the structure of a graph, it

still has the time complexity of O(nk) in the worst-case, where

the size of clique, k, is a variable and n can be either the

number of vertices or edges since either one of them can be

interchangeably expressed as a function with respect to the

other. Thus, it is an exponential algorithm, which is NP-

complete.

The backtracking based solution is compared with Kouakou

algorithm which works fine only up to 200-300 nodes but

takes exponential time for higher number of nodes. Whereas

our algorithm works fine upto 4000 and higher number of

nodes.

In this paper Clique Cover problem is solved by

backtracking method in which we consider a problem instance

at a time. Parallel algorithms can be used to make the

algorithm run faster. By applying parallel algorithms several

problem instances will be considered simultaneously which

can reduce the run time of the algorithm to a great extent.

VI. REFERENCES

 Data Reduction, Exact, and Heuristic Algorithms for

Clique Cover by Jens Gramm , Jiong Guo ,Falk Hffner

Rolf Niedermeier

 Fast Exact and Heuristic Methods for Role Minimization

Problems by Alina Ene,William Horne ,Nikola

Milosavljevic.

 A HARDWARE ALGORITHM FOR THE MINIMUM P -

QUASI CLIQUE COVER PROBLEM by Shuichi

Watanabe, Junji Kitamichi, Kenichi Kuroda.

 Reducibility among Combinatorial Problems by Richard

Karp.

 Approximating the minimum clique cover and other hard

problems in subtree filament graphs by J. Mark Keila ,

Lorna Stewartb

 On-line algorithm for the minimal b-clique cover problem

interval graphs by B. Kouakou.

 Polynomial-Time Data Reduction for DOMINATING SET

by JOCHEN ALBER, MICHAEL R. FELLOWS and ROLF

NIEDERMEIER.

 A Stochastic Local Search Approach to Vertex Cover by

Silvia Richter, Malte Helmert, and Charles Gretton.

 www.nada.kth.se

 www.new.dli.ernet.in

 www.geometrylab.de

 www.liafa.jussieu.fr

 ieeexplore.ieee.org

 www.portal.acm.org.

ftp://ftp.eng.auburn.edu/pub
ftp://ftp.eng.auburn.edu/pub
ftp://ftp.eng.auburn.edu/pub
ftp://ftp.eng.auburn.edu/pub
ftp://ftp.eng.auburn.edu/pub
ftp://ftp.eng.auburn.edu/pub
ftp://ftp.eng.auburn.edu/pub
ftp://ftp.eng.auburn.edu/pub
http://www.geometrylab.de/
http://www.liafa.jussieu.fr/

