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Abstract:-  
 
This paper review of Support Vector Clustering (SVC), which is inspired by the support vector machines, can overcome the limitation 

of clustering algorithms. SVC algorithm has two main steps[1].  a) SVM Training and b) Cluster Labeling .SVM training step 

involves construction of cluster boundaries and cluster labeling step involves assigning the cluster labels to each data point. Solving 

the optimization problem and cluster labeling is time consuming in the SVC training procedure. Many of the research efforts have 

been taken to improve the efficiency of cluster labeling step. Preprocessing procedures used for SVC to reduce SVC training set are 

Heuristics for Redundant-point Elimination (HRE) and Shared Nearest Neighbor (SNN) technique result in loss of data Due to fewer 

efforts taken by researchers to reduce execution time and accuracy of SVC training procedure. 
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1. Introduction to clustering 

 
 Cluster analysis is the organization of a collection of patterns 

(usually represented as a vector of measurements, or a point in a 

multidimensional space) into clusters based on similarity. Intuitively, 

patterns within a valid cluster are more similar to each other than they 

are to a pattern belonging to a different cluster [4]. An example of 

clustering is depicted in Figure 1.1 

 

                 Figure 1: Data Clustering [4]. 

 The input patterns are shown in Figure 1(a), and the desired 

clusters are shown in Figure 1(b). Here, points belonging to the same 

cluster are given the same label. The variety of techniques for 

representing data, measuring proximity (similarity) between data 

elements, and grouping data elements has produced a rich and often 

confusing assortment of clustering methods [4]. 

 It is important to understand the difference between clustering 

unsupervised classification) and discriminant analysis (supervised 

classification). In supervised classification, we are provided with a 

collection of labeled (preclassified) patterns; the problem is to label a 

newly encountered, yet unlabeled, pattern. Typically, the given 

labeled (training) patterns are used to learn the descriptions of classes 

which in turn are used to label a new pattern. In the case of clustering, 

the problem is to group a given collection of unlabeled patterns into 

meaningful clusters. In a sense, labels are associated with clusters 

also, but these category labels are data driven; that is, they are 

obtained solely from the data. Clustering is useful in several 

exploratory pattern-analysis, grouping, decision-making, and 

machine-learning situations, including data mining, document 

retrieval, image segmentation, and pattern classification. However, in 

many such problems, there is little prior information (e.g., statistical 

models) available about the data, and the decision-maker must make 

as few assumptions about the data as possible. It is under these 



             Volume II Issue II, FEB, 2013                      IJLTEMAS                         ISSN 2278 - 2540 
 

130 | P a g e                                                 w w w . i j l t e m a s . i n  

 

restrictions that clustering methodology is particularly appropriate for 

the exploration of interrelationships among the data points to make an 

assessment (perhaps preliminary) of their structure [4].  

 Clustering has always been a tricky task in pattern 

classification. Many clustering algorithms have been proposed in the 

past years. Division of patterns, data items, and feature vectors into 

groups (clusters) is a complicated task since clustering does not 

presume any prior knowledge, which are the clusters to be searched 

for. There exist no class label attributes that would tell which classes 

exist. Some of the traditional clustering techniques are. 

a) Hierarchical clustering algorithms 

b) Partitional clustering algorithms  

c) Nearest neighbor clustering 

 d) Fuzzy clustering.  

 Clustering algorithms are capable of finding clusters with 

different shapes, sizes, densities, and even in the presence of noise and 

outliers in datasets. Although these algorithms can handle clusters with 

different shapes, they still cannot produce arbitrary cluster boundaries 

to adequately capture or represent the characteristics of clusters in the 

dataset [5].  

2. Components of a Clustering Task 

Typical pattern clustering activity involves the following steps [4]:  

1. Pattern representation (optionally including feature extraction 

and/or selection), 

2. Definition of a pattern proximity measure appropriate to the 

data,            

3. Clustering or grouping, 

4. Data abstraction (if needed), and 

5. Assessment of output (if needed).  

 Figure 2 [4] depicts a typical sequencing of the first three of 

these steps, including a feedback path where the grouping process 

output could affect subsequent feature extraction and similarity 

computations.  

 

                     Figure 2: Stages in Clustering. 

Pattern representation: It refers to the number of classes, the 

number of available patterns, and the number, type, and scale of the 

features available to the clustering algorithm. Some of this 

information may not be controllable by the practitioner. Feature 

selection is the process of identifying the most effectively subset of 

the original features to use in clustering. Feature extraction is the use 

of one or more transformations of the input features to produce new 

salient features. Either or both of these techniques can be used to 

obtain an appropriate set of features to use in clustering.  

Pattern proximity: It is usually measured by a distance function 

defined on pairs of patterns. A variety of distance measures are in use 

in the various communities [5]. A simple distance measure like 

Euclidean distance can often be used to reflect dissimilarity between 

two patterns, whereas other similarity measures can be used to 

characterize the conceptual similarity between patterns [5].  

Clustering: The grouping step can be performed in a number of 

ways. The output clustering (or clustering‟s) can be hard (a partition 

of the data into groups) or fuzzy (where each pattern has a variable 

degree of membership in each of the output clusters). Hierarchical 

clustering algorithms produce a nested series of partitions based on a 

criterion for merging or splitting clusters based on similarity. 

Partitional clustering algorithms identify the partition that optimizes 

(usually locally) a clustering criterion. Additional techniques for the 

grouping operation include probabilistic [4] and graph-theoretic [4] 

clustering methods.  

Data abstraction: It is the process of extracting a simple and 

compact representation of a data set. Here, simplicity is either from 

the perspective of automatic analysis (so that a machine can perform 

further processing efficiently) or it is human-oriented (so that the 

representation obtained is easy to comprehend and intuitively 

appealing). In the clustering context, a typical data abstraction is a 

compact description of each cluster, usually in terms of cluster 
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prototypes or representative patterns such as the centroid [4]. How is 

the output of a clustering algorithm evaluated? What characterizes a 

„good‟ clustering result and a „poor‟ one? All clustering algorithms 

will, when presented with data, produce clusters-regardless of 

whether the data contain clusters or not. If the data does contain 

clusters, some clustering algorithms may obtain „better‟ clusters than 

others. 

Assessment of output: The assessment of a clustering procedure‟s 

output, then, has several facets. One is actually an assessment of the 

data domain rather than the clustering algorithm itself-data which do 

not contain clusters should not be processed by a clustering 

algorithm. The study of cluster tendency, wherein the input data are 

examined to see if there is any merit to a cluster analysis prior to one 

being performed, is a relatively inactive research area, and will not be 

considered further in this survey Cluster validity analysis, by contrast, 

is the assessment of a clustering procedure‟s output. Often this 

analysis uses a specific criterion of optimality; however, these criteria 

are usually arrived at subjectively. Hence, little in the way of „gold 

standards‟ exist in clustering except in well-prescribed sub domains. 

Validity assessments are objective [4] and are performed to determine 

whether the output is meaningful. A clustering structure is valid if it 

cannot reasonably have occurred by chance or as an artifact of a 

clustering algorithm. When statistical approaches to clustering are 

used, validation is accomplished by carefully applying statistical 

methods and testing hypotheses. There are three types of validation 

studies. An external assessment of validity compares the recovered 

structure to an a priori structure. An internal examination of validity 

tries to determine if the structure is intrinsically appropriate for the 

data. A relative test compares two structures and measures their 

relative merit. 

3. Hierarchical Clustering Algorithms 

 The operation of a hierarchical clustering algorithm is 

illustrated using the two-dimensional data set in Figure 3 [4]. This 

figure depicts seven patterns labeled A, B, C, D, E, F, and G in three 

clusters. A hierarchical algorithm yields a dendrogram representing 

the nested grouping of patterns and similarity levels at which 

groupings change. A dendrogram corresponding to the seven points  

 

in Figure 3 (obtained from the single-link algorithm) is shown in 

Figure.4 [4].  

 

Figure 3: Points falling in three clusters. 

 The dendrogram can be broken at different levels to yield 

different clustering‟s of the data. Most hierarchical clustering 

algorithms are variants of the single-link, complete-link, and 

minimum-variance algorithms. Of these, the single-link and complete 

link algorithms are most popular. These two algorithms differ in the 

way they characterize the similarity between a pair of clusters. In the 

single-link method, the distance between two clusters is the minimum 

of the distances between all pairs of patterns drawn from the two 

clusters (one pattern from the first cluster, the other from the second). 

In the complete-link algorithm, the distance between two clusters is 

the maximum of all pair wise distances between patterns in the two 

clusters. In either case, two clusters are merged to form a larger 

cluster based on minimum distance criteria [4].  

 

Figure 4: The dendrogram obtained using the single-link 

algorithm
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4.   Partitional Algorithms 

 A partitional clustering algorithm obtains a single 

partition of the data instead of a clustering structure, such as the 

dendrogram produced by a hierarchical technique. Partitional 

methods have advantages in applications involving large data 

sets for which the construction of a dendrogram is 

computationally prohibitive. A problem accompanying the use 

of a Partitional algorithm is the choice of the number of desired 

output clusters. A seminal paper [4] provides guidance on this 

key design decision. The Partitional techniques usually produce 

clusters by optimizing a criterion function defined either locally 

(on a subset of the patterns) or globally (defined over all of the 

patterns). Combinatorial search of the set of possible labeling 

for an optimum value of a criterion is clearly computationally 

prohibitive. In practice, therefore, the algorithm is typically run 

multiple times with different starting states, and the best 

configuration obtained from all of the runs is used as the output 

clustering. 

5. Squared Error Algorithms 

 The most intuitive and frequently used criterion function 

in partitional clustering techniques is the squared error criterion, 

which tends to work well with isolated and compact clusters. 

The k-means is the simplest and most commonly used algorithm 

employing a squared error criterion [4]. It starts with a random 

initial partition and keeps reassigning the patterns to clusters 

based on the similarity between the pattern and the cluster 

centers until a convergence criterion is met (e.g., there is no 

reassignment of any pattern from one cluster to another, or the 

squared error ceases to decrease significantly after some 

number of iterations). The k-means algorithm is popular 

because it is easy to implement, and its time complexity is O(n), 

where n is the number of patterns. A major problem with this 

algorithm is that it is sensitive to the selection of the initial 

partition and may converge to a local minimum of the criterion 

function value if the initial partition is not properly chosen. 

 

 

Squared Error Clustering Method 

(1)  Select an initial partition of the patterns with a fixed 

number of clusters and cluster centers. 

(2)  Assign each pattern to its closest cluster center and 

compute the new   cluster centers as the centroids of the 

clusters. Repeat this step until   convergence is achieved, 

i.e., until the cluster membership is stable. 

(3)  Merge and split clusters based on some heuristic 

information, optionally repeating step 2 [4]. 

k-Means Clustering Algorithm 

(1)  Choose k cluster centers to coincide with k randomly-

chosen patterns or k randomly defined points inside the 

hypervolume containing the pattern set. 

(2)  Assign each pattern to the closest cluster center. 

(3)  Recompute the cluster centers using the current cluster 

memberships. 

(4)  If a convergence criterion is not met, go to step 2. 

Typical convergence criteria are: no (or minimal) 

reassignment of patterns to new cluster centers, or 

minimal decrease in squared error [4]. 

 Several variants [4] of the k-means algorithm have been 

reported in the literature. Some of them attempt to select a good 

initial partition so that the algorithm is more likely to find the 

global minimum value. 

6. Nearest Neighbor Clustering 

 Since proximity plays a key role in our intuitive notion 

of a cluster, nearest neighbor distances can serve as the basis of 

clustering procedures. An iterative procedure was proposed in 

Lu and Fu; it assigns each unlabeled pattern to the cluster of its 

nearest labeled neighbor pattern, provided the distance to that 

labeled neighbor is below a threshold. The process continues 

until all patterns are labeled or no additional labeling occur. The 

mutual neighborhood value (described earlier in the context of 

distance computation) can also be used to grow clusters from 

near neighbors [4]. 
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7. Fuzzy Clustering 

 Traditional clustering approaches generate partitions; in 

a partition, each pattern belongs to one and only one cluster. 

Hence, the clusters in a hard clustering are disjoint. Fuzzy 

clustering extends this notion to associate each pattern with 

every cluster using a membership function. The output of such 

algorithms is a clustering, but not a partition [4]. 

 

8. Support Vector Machine 

 Support Vector Machine is supervised Machine 

Learning technique. Support Vector Machine (SVM) was first 

introduced in 1992 by Boser, Guyon, and Vapnik [41]. Support 

Vector Machines (SVMs) are a set of related supervised 

learning methods used for classification and regression [2]. 

They belong to a family of generalized linear classifiers. In 

another terms, Support Vector Machine (SVM) is a 

classification and regression prediction tool that uses Machine 

Learning theory to maximize predictive accuracy while 

automatically avoiding over-fit to the data. Support Vector 

machines can be defined as systems which use hypothesis space 

of a linear functions in a high dimensional feature space, trained 

with a learning algorithm from optimization theory that 

implements a learning bias derived from statistical learning 

theory. Support vector machine was initially popular with the 

Neural Information Processing Systems (NIPS) community and 

now is an active part of the Machine Learning research around 

the world. SVM becomes famous when, using pixel maps as 

input; it gives accuracy comparable to sophisticated neural 

networks with elaborated features in a handwriting recognition 

task. It is also being used for many applications, such as hand 

writing analysis, face analysis and so forth, especially for 

pattern classification and regression based applications. SVMs 

were developed to solve the classification problem, but recently 

they have been extended to solve regression problems 

 

 

9. Support Vector Clustering (SVC)  

Support Vector Clustering was first introduced in 2000 by Asa 

Ben-Hur, David Horn, Hava T. Siegelmann and Vladimir 

Vapnik [5]. The support vector clustering (SVC) algorithm is 

inspired by the support vector machines and solves a global 

optimization problem by turning the Lagrangian into the dual 

quadratic form [1, 9].  

The main objective is to find the smallest enclosing hypersphere 

in the transformed high-dimensional feature space that contains 

most of the data points. The original input space can always be 

mapped to some higher-dimensional feature space where the 

training set is separable. The hypersphere is then mapped back 

to the original data space to form a set of contours, which are 

regarded as the cluster boundaries in the original data space. 

The SVC algorithm includes two key steps: SVM training and 

cluster labeling. The former determines the hypersphere 

construction and the distance definition from a point‟s image in 

the feature space to the hypersphere center. The latter aims to 

assign each data point to its corresponding cluster [1]. 

10. Existing Support Vector Clustering 

Techniques 

 Support Vector Clustering (SVC) involves following 

steps [2]: It is shown in following figure 5. 

Data Preprocessing: Eliminates insignificant points and gives 

reduced training set. 

1. Kernel-parameter Tuning: Gives the value of (C, q).  

 

2. Optimization using SMO Algorithm: Solving dual for 

Lagrange multipliers. 

 

3. Cluster Labeling: Labeling the data points with cluster 

labels. 
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Figure 5: Flowchart of the SVC Procedure [2]. 

The SVC procedure which is inspired by the support vector 

machine technique includes two key steps: SVM training and 

cluster labeling, which are summarized in figure .6 [1]. The 

former determines the hypersphere construction and the 

distance definition from a point‟s image in the feature space to 

the hypersphere center. The latter aims to assign each data point 

to its corresponding cluster. The labeling of each data point with 

its corresponding cluster is known as cluster labeling.  

 

Figure 6: Feature Space: The Sphere [40]. 

 

Figure 7: Data Space [7]. 

Given a set of data points xj  є  ℜd, j = 1,…, N and a nonlinear 

mapping function Φ : ℜd → F , the objective is to find a 

hypershpere with the minimal radius R, such as  

 ║Φ(xj) –α║2 ≤ R 2 + ξj ,    ----------(1) 

where α is the center of the hypersphere and ξj  ≥ 0 are the slack 

variables allowing soft constraints. The primal problem is 

solved in its dual form by introducing the Lagrangian 

 L = R2 - Σj (R
2 + ξj -║Φ (xj) –α║2)βj - Σj ξjμj + C Σj ξj,  ----------(2) 

where βj ≥ 0 and μj ≥ 0 are Lagrange multipliers and C Σj ξj is a 

penalty term with C as a regularization constant [1, 9]. The dual 

form of the constrained optimization is constructed as  

 max W = Σj Φ(x ) – Σi,j βiβj Φ(xi)∙Φ(xj),  ----------(3) 

subject to the constraints: 

 (1)  0 ≤ βj ≤C,  ----------(4) 

 (2)  Σjβj = 1 for j=1, 2, N  ----------(5) 

Using the kernel representation k(xi, xj) = Φ(xi) ∙ Φ(xj), Eq. (3) 

is rewritten as 

max W = Σj k(xj, xj)βj – Σi,j βiβj k(xi, xj), ---------------   (6) 

The Gaussian kernel k(xi, xj) = e-q||x
i
-x

j
||2 is usually used for SVC 

algorithms, while polynomial kernels do not generate tight 

contour representations of clusters [1, 9]. 
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Furthermore, for each data point x, the distance of Φ(x) to the 

center is calculated as 

 R2(x) = ║Φ(x) −α║2 = k(x, x) − 2 Σjβjk(xj, x)−Σi,j 

βiβjk(xi, xj)  ----------(7) 

 The points that lie on the cluster boundaries are defined 

as support vectors (SVs), which satisfy the conditions ξ j = 0 

and 0 < βj < C. The points with ξj > 0 and βj = C lie outside the 

boundaries and are called bounded support vectors (BSVs). The 

rest of the data points lie inside the clusters. It is shown in 

figure 1.7 [40]. Note that the increase of the Gaussian kernel 

width parameter σ can increase the number of SVs, therefore 

causing the contours to change shape. By iteratively decreasing 

(increasing) σ from a certain large (small) value, SVC can form 

agglomerative (divisive) hierarchical clusters [1]. 

 

Figure 8: Flowchart of SVC algorithm [1]. 

 The data points are clustered together according to the 

adjacency matrix A, which is based on the observation that any 

corresponding path in the feature space, which connects a pair 

of data points belonging to different clusters, must exit from the 

hypersphere. Given each pair of xi and xj, their adjacency value 

is defined as 

 Aij = 1, if R (xi + γ (xj -xi)) ≤ R, γ є [0, 1]  ---------(8) 

 0, otherwise.  

 

 

     Figure 9: BSVs, SVs and Internal data points [7]. 

 The number of sampling points for each edge between 

two data points is usually around 20 [5]. It is shown in figure 8 

[7]. The overall computational complexity of the labeling step is 

O (N2), which becomes a critical issue for large-scale data sets. 

Ben-Hur et al. [5] suggested a heuristic that only calculates the 

adjacency value between support vectors to lower the time 

complexity to O((N−Nbsv)N
2

sv), where Nbsv  is the number of 

BSVs and Nsv is the number of SVs. However, this heuristic 

still has quadratic complexity when Nsv is greater than 0.05N − 

0.1N [5]. 

 

Figure 10: Cluster Analysis: Adjacency matrix [7]. 
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11. Conclusion  

Support Vector Clustering is one of the techniques in pattern 

recognition. Support Vector Clustering is Kernel-Based 

Clustering. Division of patterns, data items, and feature vectors 

into groups (clusters) is a complicated task since clustering does 

not assume any prior knowledge, which are the clusters to be 

searched for. There exist no class label attributes that would tell 

which classes exist. Thus clustering serves in particular for 

exploratory data analysis with little or no prior knowledge. 

Some of the traditional clustering techniques are Hierarchical 

clustering algorithms, Partitional clustering algorithms, Nearest 

neighbor clustering, and Fuzzy clustering. 
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