
 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

112 | P a g e
w w w . i j l t e m a s . i n

 Disk Scheduling Algorithms and presentation of mathematical model with database

Uma Shanker Jayswal* Gaurav Kumar Jain** Ravi Ranjan***

ABSTRACT

Database management systems have entered the internet age. If too many users approach for information, then

this degrades the system performance. The degradation may cause delay and trouble for particular end user in accessing

the information. Accessing information in easy way and within certain time, by keeping its freshness, assessing user’s

requirements and then providing them information in time is important aspect.

Conventional database are mainly characterized by their strict data consistency requirements. Database systems for real

time applications must satisfy timing constraints associated with transactions. The main objective of this paper is to

initiate an enquiry in real time databases and presents, Mathematical model for Disk scheduling for real time database

systems.

OVERVIEW

The vast majority of research in the field of real-time

databases has focused in concurrency control and

transaction scheduling. Scheduling transactions in real-

time database involves determining which transactions

execute when. Similar to tasks in other real-time

systems, real-time transactions have priority and must

be scheduled accordingly in order to meet specified

timing constraints. However, unlike most other real-

time process, real-time transactions access shared data.

Therefore, real-time transaction scheduling must take

into account the logical consistency. That is,

concurrency control must be considered when

scheduling real-time transaction. The primary

scheduling goal in real-time systems is to satisfy the

timing constraints of transaction [16, 17]. A Real-time

database system requires integrated approach to

consider data consistency requirements and timing

constraints together in scheduling transactions.

The goal of transaction and query processing in real-

time database is to maximize the number of successful

transactions in the system [16].

General Parameters for Disk Scheduling:

The following parameters are chosen for Disk

Scheduling.

Deadline: Time by which execution of the task should

be completed, after the task is released.

Arrival time: Arrival time if the transaction

Total number of Transactions

Inter Arrival time

Average Execution Time

Transaction Size

Slack time: is an estimate of how long we can delay the

execution of transaction and still meet its deadline

Access Time:

Access time =Seek Time + Rotation Latency + Transfer

Time.

Where,

Seek Time is the time for the disk to move the heads to

the cylinder containing the desired sector.

Rotation Latency is the transfer time needed to transfer

data over the IO bus.

Priority: Priorities can be assign by two ways.

Earliest Deadline: the transaction with the earliest

deadline has the highest priority. A major weakness of

this policy is that it can assign the highest priority to a

task that already has missed r is about to miss its

deadline.

Least Slack:

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

113 | P a g e
w w w . i j l t e m a s . i n

Slack time is an estimate if how long we can

delay the execution of transaction and still meet its

deadline. If S>=0 then it will finish at or before its

deadline. A negative slack time results either when

transactions have already issued its deadline or when

we estimate that is cannot meet its deadline. The slack

time of a transaction which is not executing decreases.

Hence the priority if that transaction increases.

Classical Disk Scheduling Algorithm:

The four classical scheduling algorithms

described below are well known.

FCFS

This is the simplest strategy in which each

request is served in first-come-first-serve basis [3].

SCAN

This is also known as the elevator algorithm

which the arm moves in one direction and serves all the

request in that direction until there are no further

request in that direction [4].

C-SCAN

The circular SCAN algorithm works in the same

way as SCAN except that it always scans in one

direction. After serving the last request in the scan

direction, the arm return to the start position [3].

SSTF

The SSTF, for shortest seek time first, algorithm

simply selects the request closest to the current arm

position for service [3].

A common feature o fall these classical

scheduling algorithms is that none of them takes the

time constraints of request into account. This results in

poor performance of classical algorithms in real-time

systems.

REAL-TIME DISK SCHEDULING ALGORITHMS

The real time disk scheduling algorithms like

Earliest Dead line First (EDF), Priority Scan (P-Scan),

Feasible Deadline Scan (FD- Scan), Shortest Seek and

Earliest Deadline by ordering (SSEDO) and Shortest Seek

ans earliest Deadline by Values (SSEDV)are discussed in

brief prior to develop the mathematical madel fr them

as under.

EDF ALGORITHM

The Earliest Deadline First algorithm is an

analog of FCFS. Requests are orders according to

deadline and the request with the earliest deadline is

serviced first. Assigning priorities to transactions an

Earliest Deadline policy minimizes the number of late

transactions in systems operating under low or

moderate levels of resources and data contention. This

is due to Earliest Deadline steeply degrades in an

overloaded system [12].This is because, under heavy

loading, transactions gain high priority only when they

are close to their deadlines. Gaining high priority at this

late stage may not leave sufficient time for transactions

to complete before their deadlines. Under heavy loads,

then, a fundamental weakness of the Earliest Deadline

priority policy is that it assigns the their deadlines, thus

delaying other transactions that might still be able to

meet their deadlines [1].

P-SCAN ALGORITHM

In Priority scan (P-Scan) all request in the I/O queue are

divided into multiple levels. The Scan algorithm is used

within each level, which means that the disk serves any

requests that is passes in the current served priority

level until there are no more requests in that direction.

On the completion of each disk service, the scheduler

checks to see whether a disk request of a higher priority

is waiting for service [13]. If found, the scheduler

switches to that higher level. In this case, the request

with shortest seek distance from the current arm

position is used to determine the scan direction. All the

I/O requests are mapped into three priority levels

according ti their deadline information. Specially,

transactions relative deadline are uniformly distributed

between LOW_DL and UP-DL, where LOW_DL and

UP_DL are lower and upper bounds for transaction

deadline settings. If a transactions relative deadline is

greater than (LOW_DL + UP_DL) /2 then it is assigned

the lowest priority. If the relative deadline is less than

(LOW_DL and UP_DL) / 4, then the transaction receive

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

114 | P a g e
w w w . i j l t e m a s . i n

the highest priority. Otherwise the transaction is

assigned a middle priority [4].

FD-SCAN ALGORITHM

 In FD-Scan, the track location of the request

with earliest feasible deadline is used to determine the

scan direction. A deadline is feasible if we estimate that

it can be met. More specially, a request that is n tracks

away from the current head position has a feasible

deadline d if d >= t + Access(n) where is the current time

and Access(n) is a function that yields the expected time

needed to service a request n tracks away. Each time

that a scheduling decision is made, the read requests

are examined to determine which have feasible

deadlines given the current head position. The request

with the easiest feasible deadline is the target and

determines the scanning direction. The head scan

toward the target servicing read requests along the

way. These requests either have deadline later than the

target request or have unfeasible deadline, ones that

cannot be met. If there is no read request with a

feasible deadline, then FD-SCAN simply services the

closest read request. Since all request deadline have

been (or will be) missed, the order of service is no

longer important for meeting deadlines [13].

 The SSEDO and SSEDV algorithms are based on

the following assumptions:

Let,

ri: be the I/O request with the i-th smallest deadline at a

scheduling instance;

di: be the distance between the current arm position

and requests ri’s positioning;

Li: be the absolute deadline of ri[3][15].

 The two algorithms maintain a queue sorted

according to the absolute deadline, Li, of each request

in the queue, i.e., the window consists of m requests

with smallest deadline.

SSEDO ALGORITHM

At a scheduling instance, the scheduler selects

one of the request from the window for service. The

scheduling rule is to assign each request a weight, say

wi for request ri, where wi = 1 <= w2 <= … <=wm and m

is the window size, and to choose one with the

minimum value of widi. We shall refer to this quality

widi as the priority value associated with request ri. If

there is more than one request with the same priority

value, the one with earliest deadline is selected. It

should be clear that foe ay specific request, its priority

value varies at each scheduling instance, since di, ri’s

position with respect to disk arm position, is changing

as disk arm moves.

 The idea behind the above algorithm is that we

want to give requests with smaller deadlines higher

priorities so that they can receive service earlier. This

can be accomplished by assigning smaller values to their

weights. On the other hand, when a request with large

deadline is “very close to the current arm position

(which means less service time), it should get higher

priority. This is especially true when a request is to

access the cylinder where the arm is currently

positioned. Since there is no seek time in this case and

we are assumping the seek time dominates the seervice

time can be ignored. Therefore these requests should

be given the highest priority. There are various ways to

assign these weights wi. The weights can simply set to

wi =βi-1 (β≥) i= 1,2,3…m.

 Where β is an adjustable scheduling parameter.

Note that wi assigns priority only on the basis of the

ordering of deadlines, not on their absolute or relative

values [3].

SSEDV ALGORITHM

In the SSEDO algorithm described above, the

scheduler uses only the ordering information of request

deadlines and does not use the differences between

deadlines of successive requests in the window. For

example, suppose there are two requests in the

window, and r1’s deadline is very close but r2’s deadline

is far away. If r2’s position is “very” close to the current

arm position, then the SSEDO algorithm might schedule

r2 first, which my result in the loss of r1. However, if r1

is scheduled first, then both r1 and r2 might be served.

On the other extreme, of r2 deadline is almost same as

r1’s and the distance d2 is less then d1 but greater than

d1 / β, then SSEDO will schedule r1 for service and r2

will be lost. In this case, since there could be loss any

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

115 | P a g e
w w w . i j l t e m a s . i n

way, it seems reasonable to serve the closer one (r2) for

its service time is smaller. Based on these

considerations, we expect that a more intelligent

scheduler might use not only the deadline ordering

information but also the deadline value information for

decision making. This leads to the following algorithms:

associate a priority value of α di = (1-α)li to request ri

and choose the request with minimum value for service,

where li is the remaining life time of request ri, defined

as length of time between current time and ri’s deadline

Li and α (0 ≤ α ≤ 1) is a scheduling parameter.

 A common characteristic of SSEDV and SSEDO

algorithm is that both consider time constraints and

disk service times. Which part play the greater role in

decision making can be adjusted by tuning the

scheduling parameters α or β, depending on the

algorithm [3] [15].

SYSTEM ANALYSIS:

System requirement and analysis is the main

step I System Development Life Cycle (SDLC). Systems

analysis and design is a systematic approach to

identifying problems, opportunities, and objectives;

designing computerized information flows in

organization; and designing computerized information

systems to solve a problem.

 In the System Analysis phase here, we are

defining the system boundaries, opportunities and

objectives and system requirement.

 Real-time database systems comine the

concepts from real-time systems and conventional

database systems. Real-time systems are mainly

characterized by their strict timing requirements in

terms of deadline. Conventional databases are mainly

characterized by their strict data consistency constrains.

The primary scheduling goal in real-time systems is to

satisfy the timing constraint of transaction.

 A transaction is a collection of actions, which

comprise a consistent transformation of the system-

state. Each transaction, when executed alone,

transforms a consistent stable into a new consistent

state; that is , transactions preserve consistency of the

database information. Interleaving transactions access

to the database can maximize throughput and resource

utilization. Therefore, various actions of different

transaction need to be executed with maximal

concurrency by interleaving actions from several

transactions while continuing to give each transaction a

consistent view of the database. A particular

sequencing fo the actions from different transactions is

called a schedule. A schedule that gives each

transaction a consistent view of the database state is a

called a consistent schedule.

 Real time scheduling algorithms should

therefore be based on the “inequalities” of

transactions. Which is popular method is to assign a

numeric priority to each transaction, with higher

priority is given an upper hand in gaining access to

system resources. A transaction has many attributes

that may affect its priority mainly deadline, for, in time

completion of transaction.

As a major asset of a computer system, efficient use of

CPU cycles is very important. Conventional scheduling

algorithms [14], as employed by most of the existing

operating system, aim at balancing the number of CPU-

bound and I /O-bound jobs to maximize system

utilization and thought put. They are also designed to

treat processes fairly; each one gets its fair share of the

system resource. Other performance criteria include

small job turnaround time, small waiting time, and fast

response time.

 However elaborated, these algorithms are not

adequate for real-time transaction scheduling. This is

because in a RTDBS, transaction should be scheduled

according to their criticalness and the tightness of their

deadlines. Even if this means sacrificing fairness and

system through put.

 Real-time scheduling algorithms should therefore be

based on the “inequalities” of transaction. They should

give preferential treatment to transactions, which are

very critical, and with stringent timing constraints. A

popular method is to assign a numeric priority to each

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

116 | P a g e
w w w . i j l t e m a s . i n

transaction, which reflects its relative urgency. A

transaction with higher priority is given an upper hand

in gaining access to system resources. A transaction has

many attributes that may affect its priority, those

attributes that are most relevant to a RTDBS for making

decision about different scheduling techniques.

 Most of the real time transaction scheduling

algorithm assumes that the transaction scheduler is

supposed to have no idea about transaction’s

computing time and resource requirement in advance,

which is the case of soft or firm deadline applications.

Priority of a transaction is thus assigned based on its

timing constraint (I.e., deadline) and / or value, without

considering information about its routine behavior.

Also, conflict resolution schemes used in real time

concurrency control protocols do not utilize such

information. Consequently, they cannot guarantee that

each transaction will complete by its deadline, but try to

minimize the deadline miss ratio of transactions or to

maximize the total value of transactions have different

values.

 Real word examples of applications supporting

soft or firm deadline transaction are provided in [2].

Banking system and airline reservation system usually

process soft deadline transactions. When a customer

submits a transaction within its deadline, the customer

prefers getting the response late than not getting it at

all. The stock market trading is an example of

applications supporting firm deadline transactions. If,

for instance, a transaction is submitted to learn the

current price of a particular stock, the system should

either return the operation at all, because conditions in

the stock market changes fastly.

 The scheduler thus schedule each transaction

based on its transaction deadlines using Earliest

Deadline first, Priority Scan, Feasible Deadline Scan,

priority Scan, Shortest Seek and Earliest Deadline by

ordering and Short Seek and Earliest Deadline by value

least slack time first etc. algorithms.

 Much of the work done on real time job

scheduling, focuses mainly on CPU scheduling.

Transaction scheduling, however, involves not only the

CPU. In fact, due to the extensive data processing

requirements of a database system, resources such as

data, disk I/O, and memory are also subject to serve

competition among concurrently running transactions.

Careful scheduling the use of these resources is very

important to the performance of RTDBSs.

 So far less consideration is given to the

architecture of the RTDBS, using main memory data

bases, we can keep some database tables in memory in

order to provide freshness of information, which is valid

for shorter period. Using such technique we are able to

reduce the disk I/o and achieve predictability,

consistency and timeliness of transaction.

 From the above analysis of system, we have

investigated various real time disk scheduling

algorithms like EDF, P-Scan, FD-Scan, SSEDO and SSEDV.

The EDF is analog to first come first serve except

transactions are ordered according to deadline and the

request with earliest deadline is serviced first. A

fundamental weakness of the earliest deadline priority

policy is that it assigns the highest priority to

transactions that are close to missing their deadlines.

 In P-scan all request in the I/O queue are

divided into multiple priority levels. The disk serves any

requests that is passes in the current served priority

level until there are no more requests in that direction.

All the I/O requests are uniformly distributed between

LOW_DL and UP_DL. If a transactions deadline is

greater than (LOW_DL+UP_DL) / 2, then it is assigned

the lowest priority. If the deadline is less then (LOW_DL

+UP_DL) / 4, Then the transaction receives the highest

priority. Otherwise the transaction is assigned a middle

priority.

 In FD-Scan, the track location of the request

with earliest feasible deadline is used ti determine the

scan direction. A request that is n tracks away from the

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

117 | P a g e
w w w . i j l t e m a s . i n

current head position has a feasible deadline d .= t +

Access(n0 where t is the current time and Access(n0 is a

function that yields the expected time needed to

service a request n tracks away.

 In the SSEDO algorithm, the scheduler uses the

ordering information of request deadlines. SSEDO

assign each request a weight, say wi for request ri, widi

is the priority value associated with each request ri. The

idea is to give higher priorities t requests with smaller

deadlines so that they can receive service earlier.

Request with large deadlines “very” close to the current

arm position (which means less service time), it should

get higher priority.

 In SSEDO algorithm, the scheduler uses only the

ordering information of request deadlines. The SSEDV

uses the differences between deadlines of successive

requests in the window i.e. choose the request with

minimum values for service (remaining life time of

request i.e. length of time between current time and

request deadline).

 For the above analysis of system, for

transaction scheduling in Real time database system,

we have developed the mathematical model for real

time disk scheduling for all the above fine algorithms

with no preemptive policy for soft deadline transaction.

In these algorithms, preferential treatment is given to

transactions, which are very critical, and with stringent

timing constraints. Hence deadline is calculated on the

basis of transaction execution time and slack time. Also

we are trying to compare the performance of these

algorithms under same work load condition.

SYSTEMDESIGN:

Our subject of work is the investigation of the

various real time disk scheduling algorithms like EDF,

FD-SCAN P-SCAN, SSEDO AND SSEDV. General

investigation architecture is depicted in the figure1.

TRANSACTIONS ALGORITHMS EVALUTION

PARAMETERS

 For the development of the mathematical model

for above said algorithms first we have formulated the

disk scheduling problem for real time database systems

and then implemented the mathematical model for all

the algorithms.

Mathematical model for Real-time Disk scheduling

problem

In general, the transactions in real –time database

systems arrive in two fashions i. e. random and

constant. In the mathematical model, we have assumed

that the arrivals of transactions are random or constant.

In addition to this, the following are the some

assumptions which are required.

Initial head position is always at the block number 4.

Transaction maximum size is fixed, for instance, 100.

1) Slack factor = 1.2.

2) First arrival’s, inter arrival time is the start time

of the system.

Mathematical model is based on the queuing theory. In

queuing theory, the arrival fashion can be of random,

constant or exponential type and service fashion can be

of random, constant or exponential type. General

queuing model, always try to satisfy all the arrivals. Like

this, here in real-time disk scheduling problem we

would like to satisfy r meet the deadline f most of the

transactions i.e. maximization of number of successful

transactions or minimization of number of failure of

transaction. For the evolution of mathematical model of

all these algorithms performance, we have summarized

the comparison on the basis of two evolution

parameters, namely utilization of system and success

ratio.

 Basic parameters involved in the mathematical

model are: transmission time, transaction arrival time,

total transaction time, transaction arrival rate, total

number of transaction, transaction arrival fashion (or

distribution), seek time, average execution time,

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

118 | P a g e
w w w . i j l t e m a s . i n

transaction inter arrival time, actual arrival time,

transaction turnaround time.

As soon as the transaction enters the queue, a

unique ID is assigned to the transaction. The transaction

is identified by its ID till the time it is available in the

scheduler.

 The type of operation the transaction is going to

performed like read, write, read write and read write

and compute. The read Time, write Time and compute

Time are randomly assigned by the system.

 The transaction arrival rate, transaction arrival

rate will be input from the user.

For simulation we have considered maximum disk

size of 100 blocks.

 The block accessed, block Accessed will be

assigned randomly between (1 to max disk size i.e. 100)

The inter arrival time inter Arrival Time (IAT) of the

transactions are calculated depending on the arrival

fashion of the transaction. For random arrival inter

Arrival time – (1/ transaction arrival rate) log (1/block

Accessed).

 On the basis of equation (1), we get the interval

arrival time depends on the transaction arrival fashion.

In the case of constant transaction arrival fashion, ITA is

fixed.

 The required different parameters for

simulation are calculated on the basis of the following

equations.

 Arrival Time, arrival time will be arrival Time =

arrival time + inter arrival time. (2)

 The actual arrival time, actual arrival time is the time

when the transaction enters the scheduler and it is

calculated using the following equation actual arrival

time = arrival time (3)

Arrival time get overrides when the next transaction

comes. The transmission factor, transmission factor is

set depending on the type of operation for read

operation transmission factor = 0.6 (4)

For write operation transmission Factor = 1.2 (5)

For read and write operation transmission Factor=1.2

 (6)

 For read write and compute operation transmission

factor (7)

 The average execution time, average execution time is

calculated as follows average execution time = 1.5 8

transaction size (8)

The deadline, deadline for each transaction can be

calculated using the following equation dead line =

arrival time = (slack factor* average execution time) (9)

Calculated Properties of Transaction:

After getting the above parameters values,

following parameters of transaction are calculated.

Seek time, seek time is the time required to move the

arm head at the appropriate cylinder of the disk. In our

simulation, we have calculated the seek time using

following equation. Seek Time= block Accessed –current

Head Position (10)

Transmission time, transmission time is the time

required to transmit the data through I/O bus,

Transmission Time= transaction Size* transmission

Factor (11)

Total transaction time, total Transaction Time is

seek time plus transmission time.

Total Transaction Time = seek Time =transmission Time

 (12)

Start time, start time the time when the transaction

starts its execution. For the first transaction start Time =

0, for the next transaction Start Time = end time, the

end time of previous transaction End time, end Time

the by which the transaction completes its execution.

End Time = start Time = total Transaction Time (13)

Turnaround time, turn Around Time is the total

time from the arrival of the transaction till its execution.

Turn Around Time = end Time – actual Arrival Time

(14)

From simulation point of view, all the

transaction are generated with either random

transaction or constant transactions. The values of

some parameters of mathematical model are constant

values; these constant values are empirically drawn.

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

119 | P a g e
w w w . i j l t e m a s . i n

Evolution parameters for the simulation are US and SR

where, US is utilization of system and SR is success

ratio.

Table Profile: Table profile shows the structure of the

table, where disk and transaction parameter values are

stored, table structure is shown below:

Column name Description

Transaction No. Transaction ID block Accessed block

number to be accessed IAT inter Arrival Time of

Transactions Arrival Time Arrival Time of the transaction

 Start Time when transaction starts execution

End Time when transaction completes execution Seek

Time

 Time required to move the head to the

appropriate block of disk TA Time transmission Time

Transaction status True Transaction Time Size of

Transaction Status true if transaction is met, else false

another table is used to store the operation, deadline

and priority of transactions

Column Name Description

Transaction No. transaction ID read true if read

operation else false write true if write operation else

false Deadline of the transaction Priority of transaction.

CONCLUSION

After developing the Mathematical model for Real-Time

disk scheduling problem and after comparing all the

Algorithms it is observed that in EDF transactions are

order according to deadline and the request with

earliest deadline is serviced first. Priority scan decides

all the request in the I/O queue the scan algorithm then

serves any request that is passes in the current served

priority level until there are no more request in that

direction. In FD-SCAN, the track location of the request

with earliest feasible deadline is used to determine the

scan direction. In the SSEDO algorithm, the scheduler

uses the ordering information of request deadlines,

whereas SSEDV use the difference between deadlines of

successive requests in the windows.

 The results of the comparison shows that,

performance of SSEDV is better than SSEDO, since the

SSEDV uses more timing information than the SSEDO for

decision making. P-SCAN and FD-SCAN perform

essentially at the same level, with one better at high

load cases, but worse for low load cases. The EDF

algorithm is good when the system is lightly loaded, but

it degenerates as soon as load increases.

References:

[1].R.Abbott and H.Garcia-Molina, “Scheduling real time

transcation: A performance evaluation,”proceedings of

the 14 VLDB conference,los angeles, California, (1988).

[2].N. Audsley, A.Burns, “real time system scheduling ”,

technical report no.YCS134,department computer

science, the university of York,UK,(1990).

[3]. Shenze Chen, Joh A.Stankovic, James Curose and

DonTowsley, “performance evaluation of two new disk

scheduling algorithmn”, The Journal of real time system,

(1990).

[4]. S.Chen, J.A.Stankovic, J.F.Kurose, and D.Towsley, “

performance evolution of two new disk scheduling

algorithm for real time systems ”, the Journal of real

time system, 3(1991)307-336

[5]. Z.Dimitrijevic, R.Rangaswamy, and E.Chang, “design,

analysis, and implementation of virtual IO”.(2002)

[6]. Value Based Schedduling In real time database.

Systems.Jayant R.Haritsa, Michael J.Carey, and Miron

Livny.Recieved(1991).

[7]. Kao, B.and Garcia-Molina,H.,”overview of real time

database systems,”in advances in real time systems

(ed.S.H.Son), (1995)463-86.

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

120 | P a g e
w w w . i j l t e m a s . i n

[8]. “Evaluation of sceduling algorithm for real time

disk I/O”-YIFENG Zhu, department of computer science

and engineering, university of Nebraska-Lincoln,(2002).

