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Abstract—This paper reports a new and accurate method 

forload−flow solution of radial distribution networks with minimum 

data preparation. The node and branch numbering need not to be 

sequential like other available methods. The proposed method does 

not need sending−node, receiving−node and branch numbers if these 

are sequential. The proposed method uses the simple equation to 

compute the voltage magnitude and has the capability to handle 

composite load modelling. The proposed method uses the set of 

nodes of feeder, lateral(s) and sub lateral(s). The effectiveness of the 

proposed method is compared with other methods using two 

examples. The detailed load−flow results for different kind of 

load−modellings are also presented. 
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I INTRODUCTION  

THE exact electrical performance and power flows of 

thesystem operating under steady state is required in efficient 
way known load−flow study that provides the real and reactive 
power losses of the system and voltages at different nodes of 
the system. With the growing market in the present time, 
effective planning can only be assured with the help of 
efficient load−flow study. The distribution network is radial in 
nature having high R/X ratio whereas the transmission system 
is loop in nature having high X/R ratio. Therefore, the 
variables for the load−flow analysis of distribution systems are 
different from that of transmission systems. The distribution 
networks are known as ill−conditioned.  The conventional 
Gauss Seidel (GS) and Newton Raphson (NR) method does 
not converge for the distribution networks. A number of 
efficient load−flow methods for transmission systems are 
available in literature.  A few methods had been reported in 
literature for load−flow analysis of distribution systems. The 
analysis of distribution systems is an important area of activity 
as distribution systems is the final link between a bulk 
powersystem and consumers [1–3].The methods proposed in 
[4,5] were very time consuming and increased the complexity. 
Kersting and Mendive [6] and Kersting [7] proposed a 
load−flow technique for solving radial distribution networks 
by updating voltages and currents using the backward and 
forward sweeps with the help of ladder−network theory. 
Stevens et al. [8] showed that the method proposed in [6,7] 

became fastest but could not converge in five out of twelve 
cases studied. Shirmohammadi et al. [9] proposed a method 
for solving radial distributionnetworks with the help of direct 
voltage application of Kirchoff’s laws and presented a 
branch−numbering scheme to enhance numerical performance 
of the solution method. They also extended their method for 
solving the weakly meshed distribution networks. Their 
method needs a rigorous data preparation. Baran and Wu [10] 
developed the load−flow solution of radial distribution 
networks by iterative solution of three fundamental equations 
representing the real power, reactive power and voltage 
magnitude. proposed an approximate method for solving 
radial and meshed distribution networks where any node in the 
network could not be the junction of more than three branches 
i.e., one incoming and two outgoing. They had used sequential 
branch and node numbering scheme. Jasmon and Lee [14] 
developed a load−flow method for obtaining the load−flow 
solution of radial distribution networks using the three 
fundamental equations representing the real power, reactive 
power and voltage magnitude that had been proposed by 
Baran and Wu [10]. Das et al. [15] proposed a load−flow 
method using power convergence with the help of coding at 
the lateral and sub lateral nodes. For large system that 
increased complexity of computation. Their method worked 
only for sequential branch and node numbering scheme. They 
had calculated voltage of each receiving−end node using 
forward sweep. They had taken the initial guess of zero initial 
power loss. Rahamanet al. [16] proposed a method for the 
improved load−flow solution of radial distribution networks.  
The main aim of the authors is to reduce the data preparation 

and to assure computation for any type of numbering scheme 

for node and branch. If the nodes and branch numbers are 

sequential, the proposed method needs only the starting node 

of feeder, each of lateral and each of sub lateral only. The 

proposed method needs only the set of nodes and branch 

numbers of feeder, each of laterals and each of sub laterals 

only when node and branch numbers are not sequential. The 

proposed method computes branch power flow most 

efficiently and does not need to store nodes beyond each 

branch. The voltage of each node is calculated by using a 

simple algebraic equation. Although the present method is 

based on the forward sweep, it computes efficient load−flow 

of any complicated radial distribution networks very 
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efficiently even when branch and node numbering scheme are 

not sequential. The proposed method needs minimum data 

preparation compared to other methods. Two examples 

(33−node and 69−node radial distribution networks) with 

constant power (CP), constant current (CI), constant 

impedance (CZ), composite and exponential load modellings 

for each of these examples are considered. The proposed 

method is compared with other existing methods [15,17,22] . 

The initial voltage of all nodes is taken 1+j0 and initial power 

loss of all branches are also taken zero. 
II. ASSUMPTIONS 

 
It is assumed that three-phase radial distribution networks 

are balanced and represented by their single-line diagrams 

and charging capacitances are neglected at the distribution 

voltage levels. 
 

III. SOLUTION METHODOLOGY 
A single line diagram of a radial distribution network is 

shown in Fig. 1 with sequential numbering.  
In Fig. 1, the node and branch numbering scheme have been 
shown sequential. From Fig. 1, set of nodes of feeder, lateral 
and sub lateral are FN={1,2,3,4,5,6}, LN={3,7,8} and 
SLN={7,9,10}respectively. In Fig. 1 the set of branch number 
of feeder are FB = {1,2,3,4,5}, LB={6,7} and SLB = {8,9} 
respectively 
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Fig. 1 Single-line diagram of a radial distribution network 

Fig. 2 shows when the node and branch numbering scheme are 

not sequential. From Fig. 2, set of nodes of feeder, lateral and 

sub lateral are FN={1,6,4,8,10,2}, LN={4,9,3} and 

SLN={9,7,5} respectively. In Fig. 1 the set of branch number 

of feeder are FB = {1,7,3,9,5}, LB={6,2} and SLB = {8,4} 

respectively 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1  6 4  
8 

10  
2 

 

                1   7  3     9 5  

   
 

S/S         
 

5 4 8 9 
6     

 

     
 

  7 
2 

  
x  : Branch Number  

     
 

   3      
 

Fig. 2 without sequential numbering scheme   
 

From Fig. 1 and Fig. 2, the sub lateral has two branches, the 

lateral has two branches and the feeder has five branches. Let 

the feeder is denoted by 1, lateral by 2 and sub lateral by 3 in 

Fig. 1 and Fig. 2.  
Here the two dimensional array FN denotes the node of 

feeder, each lateral and each sub lateral where the first 

number of the array indicates feeder, lateral and sub lateral. 

At first feeder is kept, then lateral and sub lateral. The 

second number denotes the order of the node of the set. 

From Fig. 1, the nodes of feeder, lateral and sub lateral are 

shown below. 
FN(1,1) = 1, FN(1,2) = 2, FN(1,3) = 3, FN(1,4) = 4, 

FN(1,5) = 5 and FN(1,6) = 6  
FN(2,1) = 3, FN(2,2) = 7 and F(2,3) = 8 and FN(3,1) = 7, 

FN(3,2) = 9 and F(3,3) = 10.  
From Fig. 1, the branches of feeder, lateral and sub lateral 

are shown below.  
FB(1,1) = 1, FB(1,2) = 2, FB(1,3) = 3, FB(1,4) = 4 and 

FB(1,5) = 5  
FB(2,1) = 6 and FB(2,2) = 7 and FB(3,1) = 8 and FB(3,2) = 

9. 
 

From Fig. 2, the nodes of feeder, lateral and sub lateral are 

shown below.  
FN(1,1) = 1, FN(1,2) = 6, FN(1,3) = 4, FN(1,4) = 8, 

FN(1,5) = 10 and FN(1,6) = 2  
FN(2,1) = 4, FN(2,2) = 9 and F(2,3) = 3 and FN(3,1) = 9, 

FN(3,2) = 7 and F(3,3) = 5.  
From Fig. 2, the branches of feeder, lateral and sub lateral 

shown below.  
FB(1,1) = 1, FB(1,2) = 7, FB(1,3) = 3, FB(1,4) = 9 and 

FB(1,5) = 5  
FB(2,1) = 6 and FB(2,2) = 2 and FB(3,1) = 8 and FB(3,2) = 

4. 
Let jj = FB(i,j), m2 = FN(i,j+1) and m1 = FN(i,j). We have  

V(m2) = V(m1) − I(jj)Z(jj) (1) 
 

Let V(m2)= 
 

V(m2) 
 

 
∠δ2 

  

   
 

V(m1) = 
 

V(m1) 
 

∠δ1 And 
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Z(jj) = 
 

Z(jj) 
 

∠ϕ =R(jj)+jX(jj) 
 

  
  

I(jj) = I (jj)∠−θ 
 
Voltage of node m2 is expressed by 
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where Ps(jj) and Qs(jj) are the real and reactive powers 

coming out from the node m1. The detailed derivation has 

been shown in Appendix−A. Voltage of node m2 can also be 

calculated using the following expression also: 
   

V(m1) 
 

± 
 

V(m1) 
 2

  − 4 {P
2
 (jj) + Q

2
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       r r     
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where Pr(jj) = Ps(jj) − LP(jj) and Qr(jj) = Qs(jj) − LQ(jj) are 

the real and reactive power fed through the node m2.  
Equation (2) is used to calculate |V(m2)| due to 

its simplicity.  
The current through the branch−jj is expressed by  
 

I(jj) 

 

= 

 

V(m1) 
 

− 
 

V(m2) 
 

 

 

(4) 
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 The  real  and  reactive  power  loss  of  branch−jj  is 
 

expressed by  
 

LP(jj)= 
 

I(jj) 
 2

 R(jj) (5) 
 

  
 

and  LQ(jj)= 
 

I(jj) 
 2

 X(jj) (6) 
 

  
 

Ps(jj) = Sum of real power load of all nodes after the 

branch−jj plus the real power loss of all the branches 

after the branch−jj including the branch−jj also. 

Qs(jj)= Sum of reactive power load of all nodes after the 

branch−jj  plus  the  reactive  power  loss  of  all  the 

Branches after the branches after the branch –jj including the  

branch –jj also.  
To discuss the calculation of Ps(jj) and Qs(jj), Ps(jj) and Qs(jj) 

for sub lateral(s), lateral(s) and feeder are calculated at first 
with an assumption that they are separated.  
For the sub lateral:  
Ps[FB(3,2)] = PL[FN(3,3)] + LP[FB(3,2)] (7) Ps[FB(3,1)] = 

PL[FN(3,2)] + LP[FB(3,1)] + Ps[FB(3,2)] 
 

Ps[FB(2,2)] = PL[FN(2,3)] + LP[FB(2,2)] 
(8) 

 

Ps[FB(2,1)] = PL[FN(2,2)]+LP[FB(2,1)]+Ps[FB(2,2)] 
 

 
 

  
 

Ps[FB(1,5)] = PL[FN(1,6)] + LP[FB(1,5)]  
 

Ps[FB(1,4)] = PL[FN(1,5)] + LP[FB(1,4)] + Ps[FB(1,5)]  
 

Ps[FB(1,3)] = PL[FN(1,4)] + LP[FB(1,3)] + Ps[FB(1,4)] 
(9)  

Ps[FB(1,2)] = PL[FN(1,3)] + LP[FB(1,2)] + Ps[FB(1,3)]  

 
 

Ps[FB(1,1)] = PL[FN(1,2)] + LP[FB(1,1)] + Ps[FB(1,2)]  
 

From (7), (8) and (9), we can conclude the following:  
 

For the end branch  

Ps[FB(i,j)] = PL[FN(i,j+1)] + LP[FB(i,j)] (10) and for 

other branches,  
Ps[FB(i,j)] =PL[FN(i,j+1)]+LP[FB(i,j)]+Ps[FB(i,j+1)]  (11) 

Equations(10) and (11) shows generalized expressions for the 

computation  of  Ps’s through the feeder, lateral and sub 

lateral when they are separated. Similarly, the following are 
the generalized expressions for Qs’s: 

For the end branch  

Qs[FB(i,j)] = QL[FN(i,j+1)] + LQ[FB(i,j)] (12) 
and for other branches,  

Qs[FB(i,j)]=QL[FN(i,j+1)]+LQ[FB(i,j)]+Qs[FB(i,j+1)] (13) 

Now from Fig. 1 and Fig. 2, we have the following:  
Sub lateral is connected to lateral at the node F(2,2). 

Therefore, power flow through the branch FB(2,1) becomes 
Ps[FB(2,1)] = PL[FN(2,2)] + LP[FB(2,1)]  

+ Ps[FB(2,2)] + Ps[FB(3,1)] (14) 
and Qs[FB(2,1)] = QL[FN(2,2)] + LQ[FB(2,1)]  

+ Qs[FB(2,2)] + Qs[FB(3,1)] (15) 
The lateral is connected to feeder at the node F(1,3). 

Therefore, power flow through the branch FB(1,2) becomes 
Ps[FB(1,2)] = PL[FN(1,3)] + LP[FB(1,2)]  

+ Ps[FB(1,3)] + Ps[FB(1,1)] (16) 
and Qs[FB(1,2)] = QL[FN(1,3)] + LQ[FB(1,2)]  

+ Qs[FB(1,3)] + Qs[FB(1,1)] (17) 
From the above discussion, it can be concluded that the 

common nodes of among the sub lateral(s) and lateral(s) as 

well as that of feeder and lateral(s) must be marked at first. If 

FN(i,j) be the node of lateral which is the source node of the 

sub lateral also or be the node of feeder which is the source 

node of the lateral also, the branch number FB(i,j−1) is 

required to be stored. 

 

The proposed logic checks the common nodes of lateral(s) 

and sub lateral(s) [ first node of the sub lateral(s)] and also 

stores the branch number. If the node FN(i,j) of the lateral and 

first node FN(x,1) of the sub lateral are identical, the branch 

FB(i,j−1) of the lateral to be stored in the memory say the 

variable mm[TN−1] where TN is the total number denoting 

the sum of numbers of feeder, lateral(s) and sub lateral(s) and 

the sub lateral number is also stored in the array mn[TN−1]. 

Here TN−1 shows the total memory size of the array. 

Similarly, the common nodes of lateral(s) and feeder are found 

out and the branch number of the feeder corresponding to the 

common node of feeder and lateral are stored in mm[TN−1] 

and simultaneously lateral number is stored in mn[TN−].  
The branches of lateral(s) and feeder(s) are checked with 

the branches stored in the array mm[TN−1]. If any branch 

number of lateral and feeder matches with any element of 

mm[TN−1], say the branch number of FB(i,j) matched with 
mm[2], the Ps and Qs for the branch FB(i,j) will be  

Ps[FB(i,j)] = PL[FN(i,j+1)] + LP[FB(i,j)]  

+ Ps[FB(i,j+1)] + Ps[FB(mn[2],1)] (18) 
and Qs[FB(i,j)] = QL[FN(i,j+1)] + LQ[FB(i,j)] 

+ Qs[FB(i,j+1)] + Qs[FB(mn[2],1)] (19) 

where mn[2] is the number of lateral or sub lateral depending 
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of the value of i. 
 

VI. EXAMPLES 
To demonstrate the effectiveness of the proposed method, the 

following two examples are considered here: 
The first example is 33−node radial 

distribution network (nodes have been renumbered with 
Substation as node 1) shown in Fig. 3. Data for this system are 
available in [25]. Real and reactive power loss for CP, CI, CZ, 
Composite and Exponential load modeling as well as the 
minimum voltage and its node number is shown in Table 1. 
Base values for this system are 12.66 kV and 100 MVA 
respectively 
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Fig. 3  33 Node Radial Distribution Network [25] 
 

The second example is 69−node radial distribution 

network (nodes have been renumbered with Substation as 

node 1). Data for this system are available in [10]. Real 

and reactive power loss for CP, CI, CZ, Composite and 

Exponential load modeling as well as the minimum 

voltage and its node number is shown in Table 1. Bas  

valve of for this system are 12.66 KV and 100MVA 

respectively.  

In all the cases composite Load = 40%CP + 30%CI + 

30% CZ has been considered. Comparison of CPU time of 

the proposed method with the methods [15,17,22] is 

shown in Table 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I  
REAL POWER LOSS, REACTIVE POWER LOSS, MINIMUM VOLTAGE 

FOR CP, CI, CZ, COMPOSITE AND EXPONENTIAL LOAD 

MODELLING FOR 33−NODE AND 69−NODE RESPECTIVELY 
 

Minimu Type Total Load Power Loss Minimum  

M of     Voltage  

Voltage Load 
Real Reactive Real Reactiv 

(p.u.) 

 

(kW) (kVAr) (kW) e 

 

    

     (kVAr)   

 CP 3715.00 2300.00 202.30 135.020 V18 =  

33−node      0.909924  

Radial 

       

CI 3534.84 2175.25 176.20 117.305 V18 = 

 

Distribut 

 

     

0.916587 

 

Ion 

      

       

Network 

       

CZ 3366.20 2058.92 154.67 102.651 V18 = 

 

[25] 

 

     

0.922519 

 

       

        

 Com 3559.37 2192.43 178.71 119.031 V18 =  

 posit     0.915873  

 E       

 Expo 3469.44 1927.52 155.43 103.172 V18 =  

 nenti     0.921396  

 Al       

 

 

 

 

 CP 3802.80 2693.07 225.00 102.095 V65 = 
 

69−node      0.906755 
 

Radial 
      

 

CI 3622.08 2564.97 191.23 87.632 V65 = 
 

Distribut 
 

     

0.914548 
 

Ion 
     

 

      
 

Network 
      

 

CZ 3455.58 2446.82 164.09 76.023 V65 = 
 

[10] 
 

     

0.921351 
 

      
 

       
 

 Com 3647.60 2583.10 194.47 89.003 V65 = 
 

 posit     0.913749 
 

 e      
 

 Expo 3557.30 2314.36 165.87 76.779 V65 = 
 

 nenti     0.920887 
 

 al      
 

 

The comparison of relative CPU Time of the proposed 

method with the other existing methods [15,17,22] for 

constant power load modelling has been shown in Table II. 

All simulation works have been carried out in Celeron 
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Processor 1GHz. 
 
 
 

TABLE II  
COMPARISON OF RELATIVE CPU TIMEOF THE PROPOSED 

METHOD WITH OTHER EXISTING METHODS [15,17,22] FOR 

CONSTANT POWER LOAD MODELING 

 Example 3 Example 4 
 

Examples   
 

   
 

Methods CPU Time CPU Time 
 

  
 

   
 

Proposed method 1.00 1.00 
 

   
 

D.Daset al. [15] 1.90 2.23 
 

   
 

S.Ghosh and D.Das [17] 1.41 1.82 
 

   
 

Ranjan and D.Das [22] 1.59 1.94 
 

   
 

 
VII CONCLUSION 
 

An efficient method for load−flow solution of radial 

distribution network has been proposed in this paper. The 

proposed method reduces the data preparation. The proposed 

method simply needs starting nodes of feeder, lateral(s) and 

sub lateral(s) and no data of branch numbers for sequential 

numbering scheme. If the node and branch numbers are not 

sequential, only node numbers and branch numbers of each 

feeder, lateral(s) and sub lateral(s) are required. Therefore, the 

proposed method consumes less computer memory. The 

proposed method uses the simple voltage equation. The 

proposed method takes the zero initial loss for computation of 

voltage of each node and considers flat voltage start to 

incorporate voltage convergence. The proposed method 

overcomes the shortfalls of the methods reported in 

[15,17,22]. Effectiveness of the proposed method has been 

demonstrated by two examples (33−node and 69The 

efficiency of the proposed method in terms of CPU time has 

been checked by comparing it with the other existing methods 

[15,17,22]. 
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