Volume li, Issue lll, March 2013 IULTEMAS ISSN 2278 - 2540

New Backfilling algorithm for multiprocessor scheduling with mathematics algo.
Ajay Jain* Dharmendra Saxena **

Deepshikha Group Of Colleges, Jaipur

In this study, we propose an efficient algorithm for the multiprocessor job scheduling problem. From a
given list of jobs, Jobs are queued according to the decreasing order of their durations, Depending upon
the job duration, jobs are divided into multiple threads for processing. Multi-thr,

based on the concept of ‘gang scheduling’. To minimize the idle time of th
approach is incorporated into the algorithm.

Keyword: multiprocessor, Greedy, Gang scheduling, Backfilling

Introduction

The size of real-life scheduling problems is t
systems. Therefore, multiprocessor scheduli

proposed algorithm will try to reduce these idle times by bringing some
fill the gaps occurring in idle processors. This approach is known as

Gang scheduling and backfilling technique have been used by several researchers in solving
multiprocessors scheduling problems. Zhang et al. (2000) have analyzed the behavior of well-
known queuing policies such as first—come-first-Served (FCFS), when backfilling is used.

40| Page www.ijltemas.in

Volume li, Issue lll, March 2013 IULTEMAS ISSN 2278 - 2540

\Ward et al. (2002) have discussed the difference between two basic approaches of backfilling:
conservative backfilling and aggressive backfilling, Conservative backfilling allows a lower
priority job to run if it will not delay the highest priority job. Siyambalapitiya and Sandirigama
(2011) have proposed an improvement to FCFS approach using gang scheduling.

In this paper, we propose an improved algorithm for multiprocessor scheduling which
incorporates the idea of backfilling into gang scheduling. It is a further improvement to
a, 2010). The
ea of the quality of

decreasing-ascend algorithm proposed earlier (Siyambalapitiya and Sandii
idea is to reduce the idle times of the processors by bringing to give an
solution obtained by comparing it with a lower bound for an optimal soluti

The remainder of this paper is organized as follows: in section i dology
of developing the proposed algorithm. The proposed decrea gorithm is
presented in section 3. Results and discussion are presented in sec conclusion is

given in section 5.
2. Methodology

s té be processed by n identical

time for th job in each processor. Once a job is completed, we update this array of

earliest possibJ€ start times.

After each assignment, we check whether the number of available processors is sufficient to
schedule the next job in the queue. If the number of idle processors is less than the number of
threads in the next job to be processed, we look for a job later in the queue which could be
accommodated and bring this job to the front. Then this job is given priority and it is scheduled
as the next job. This procedure is known as brought to the front of the queue by delaying a

41| Page www.ijltemas.in

Volume li, Issue lll, March 2013 IULTEMAS ISSN 2278 - 2540

higher priority job requiring more resources which are not currently available. The idea of
backfilling is to reduce the idle time of the processors thereby trying to reduce the overall
processing time of the jobs waiting in the queue.

Once jobs are assigned to all the processors, we arrange the possible start time for the next
job for each processor in the ascending order. The next job is assigned to the processor with the
earliest possible start time. This process is continued until all the jobs are processed. Then the
total job completion time is the latest completion time of a job in the queue

To determine the quality of solution obtained, we make use of a lowegbo sed by

Siyambalapitiya and Sandirigama (2010 a). Let m be the number of jobs an the number of

Processors. Let t;be the estimated processing time for the ith job &

P=(CL;L) 100

Where p is the lower bound. Then, we

ing jobs to processors according to the position of the job in the queue. If
number of currently free processors is insufficient to schedule the next job in
the queue, move to the back of the queue and look for a job that requires
exactly the number of free processors. When such a job is found, stop moving
and bring this job to the front of the queue and schedule it. Other jobs in the
queue will be shifted to accommodate this job. If a job which fits exactly is not
available, select a suitable job that comes closest to this requirement.

42| Page www.ijltemas.in

Volume li, Issue lll, March 2013 IULTEMAS ISSN 2278 - 2540

Step 4: For each processor, compute the earliest possible start time for the next job. Arrange
start times for each processor in the ascending order. Assign jobs for processors
in the ascending order of earliest start times.

Step 5: Continue assigning jobs to processors until all the jobs are scheduled. The job with
the latest completion time gives the total processing time for all the jobs.

4. Results and Discussion

Several test problems have been solved by the proposed decreasing
These results were compares with the FCFS-gang algorit 0s
(Siyambalapitiya and Sandirigama, 2011). These re‘Its are shown in table’1.

Table 1: Comparison of Performance of Different Algorithm
Problem | Jobs Processors | Threads FS-gan’g Decreasing
number length Backfill-
gang
algorithm
1 12 4 29.0 26.5
2 17 4 53.5 47.5
3 20 4 79.7 67.17
4 22 4 83.9 76.25
5 32 4 146.4 127.42
6 25 139.8 115.33
7 31 10 73 81.8 76.5
8 40 6 387 483.4 389.75
9 50 6 X 5 397 477.0 406.83
5 6 30 623 757.7 636.00
6 30 720 817.1 729.00
20 247 288.9 251.00
15 155 177.6 161.42
8 10 148 182.3 149.33
8 15 164 181.0 166.5
10 15 146 173.8 151.3
10 10 261 3144 265.32
10 30 847 979.0 860.87
12 15 98.4 112.5 102.00
12 15 210 242.6 212.13

The percentage gap between the lower bound and the solution obtained from decreasing backfill-gang
algorithm is given in table 2.

43 |Page www.ijltemas.in

Volume lI, Issue lll, March 2013 IULTEMAS

ISSN 2278 - 2540

Figure 1: Flow chart for Decreasing backfill-Gang Algorithm

Start

v

Enter m: no of processors

A 4

Enter list of jobs with duration

v

.determine the number of threads in each job

Arrange the jobs in the descending order of job duration

v

Start assigning jobs as arranged

above

l

Sufficient processors to

schedule current job?

Schedule
this job

move to back of the queue to find as to which job can be scheduled
with available processors in the best possible manner

Yes

'

the queue.

Schedule this job. Shift the position of the remaining jobs in

\ 4

For each processor, compute the earliest
possible start time for the next job

A 4

Arrange earliest possible start times
in ascending order

i

Are there any

A

remaining jobs?

Iuo

jobs with the latest completion time give
the total time for processing all the iobs

Stop

A

Volume li, Issue lll, March 2013 IULTEMAS ISSN 2278 - 2540

Table 2: percentage Gap between the lower bound and the decreasing backfill-Gang Algorithm

Problem | 1 2 3 4 5 6 7 8 9 10
% Gap 6.00 3.26 4.95 0.33 1.94 3.90 4.79 0.71 2.48 2.09
Problem | 11 12 13 14 15 16 17 18 19 20
% Gap 1.23 1.62 4.14 0.92 1.52 3.63 1.66 1.64 3.66 1.01

According to these results, we can observe that the solution to all the test lems lie within
6% from the relevant lower bound. In fact, 80% of the test problems havg a percentage gap of

less than 4% from the lower bound. This shows that the optimal solutions in this

range.
Conclusion

The above result show that the decreasing backfill- i uperior solution
compared to FCFS-gang algorithm. It is observed that t p is extremely good,
showing that the solutions obtained are extremely close t@ th solutions. Therefore, It
can be concluded that the incorporation of eduling approach allows us

Reference
1. Feitelson D G al. (20 uling —A status Report”, job scheduling
Strategies for para otes in computer Science, Vol. 3834, pp. 1-16
2. Hou E S H (19 etic Algorithm for multi-processor Scheduling”, IEEE

ted system, Vol. 5, No. 2, pp. 113-120.
igama M (2010), “A New Greedy Algorithm for

A et al. (2002), “Scheduling jobs on parallel Systems Using a relaxed Backfill
Strategy”, Job Scheduling Strategies for parallel Processing, Lecture Notes in Computer
Science, Vol. 2537, pp. 88-102.

7. Zhang Y et al. (2000),”Improving parallel Job Scheduling by Combining Gang Scheduling
and Backfilling Techniques”, 14™ International Parallel and Distributed Processing
Symposium, Mexico, pp. 133-142.

45| Page www.ijltemas.in

