
 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

40 | P a g e w w w . i j l t e m a s . i n

New Backfilling algorithm for multiprocessor scheduling with mathematics algo.

Ajay Jain* Dharmendra Saxena **

Deepshikha Group Of Colleges, Jaipur

In this study, we propose an efficient algorithm for the multiprocessor job scheduling problem. From a

given list of jobs, Jobs are queued according to the decreasing order of their durations. Depending upon

the job duration, jobs are divided into multiple threads for processing. Multi-thread jobs are processed

based on the concept of ‘gang scheduling’. To minimize the idle time of the processors, backfilling

approach is incorporated into the algorithm.

Keyword: multiprocessor, Greedy, Gang scheduling, Backfilling

Introduction

The size of real-life scheduling problems is too large to be solved by single processor computer

systems. Therefore, multiprocessor scheduling has become necessary to solve these problems.

Multiprocessor is the coordinated processing of program by more than one processor. These

scheduling problems are known to be NP-hard even in the very restricted situations (Ullman,

1975; Hou, 1994). Approximation algorithm has been developed in response to the challenge of

solving these problems to optimality. However, in order to be useful in practical situations,

these solutions have to be supported by theoretical analysis showing how good the solutions

are.

 In this study, we propose an algorithm based on the concept of gang scheduling to solve a

multiprocessor scheduling problem. Gang scheduling is a scheduling approach in which multiple

threads of a given job are scheduled simultaneously on different processors. Start time and

finishing time of each thread it is unavoidable that certain processors may remain idle due to

this requirement. Our proposed algorithm will try to reduce these idle times by bringing some

jobs to the queue to fill the gaps occurring in idle processors. This approach is known as

backfilling (Feitelson et al. 2004).

Gang scheduling and backfilling technique have been used by several researchers in solving

multiprocessors scheduling problems. Zhang et al. (2000) have analyzed the behavior of well-

known queuing policies such as first–come-first-Served (FCFS), when backfilling is used.

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

41 | P a g e w w w . i j l t e m a s . i n

.Ward et al. (2002) have discussed the difference between two basic approaches of backfilling:

conservative backfilling and aggressive backfilling, Conservative backfilling allows a lower

priority job to run if it will not delay the highest priority job. Siyambalapitiya and Sandirigama

(2011) have proposed an improvement to FCFS approach using gang scheduling.

In this paper, we propose an improved algorithm for multiprocessor scheduling which

incorporates the idea of backfilling into gang scheduling. It is a further improvement to

decreasing-ascend algorithm proposed earlier (Siyambalapitiya and Sandirigama, 2010). The

idea is to reduce the idle times of the processors by bringing to give an idea of the quality of

solution obtained by comparing it with a lower bound for an optimal solution.

 The remainder of this paper is organized as follows: in section 2, we explain the methodology

of developing the proposed algorithm. The proposed decreasing backfilling algorithm is

presented in section 3. Results and discussion are presented in section 4 and the conclusion is

given in section 5.

2. Methodology

We assume that at any given time, we have a set of m jobs to be processed by n identical

processors and m > n. It is assumed that the actual or expected processing time for each job is

known in advance. First, we arrange the list of jobs in the descending order of job completion

times. It is assumed that when the processing time of the jobs exceeds a certain value, the jobs

is splits into two or more threads. As a result, at any given time, there could be a mixture of

single treads threads jobs and multi-threads jobs to be processed. As we assume that the jobs

are processed according to gang scheduling approach, each of the threads in a particular job

has to be processed simultaneously using identical processors.

 When we arrange the jobs in the descending order of job completion times, the jobs with the

higher number of threads will be placed at the front of the queue. It is assumed that the

processors are numbered in a certain order and each job requires a number of processors equal

to the number of threads in that job. Then we start assigning jobs to processors according to

this number to this numbering system. We also keep an array contain the earliest possible start

time for the next job in each processor. Once a job is completed, we update this array of

earliest possible start times.

 After each assignment, we check whether the number of available processors is sufficient to

schedule the next job in the queue. If the number of idle processors is less than the number of

threads in the next job to be processed, we look for a job later in the queue which could be

accommodated and bring this job to the front. Then this job is given priority and it is scheduled

as the next job. This procedure is known as brought to the front of the queue by delaying a

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

42 | P a g e w w w . i j l t e m a s . i n

higher priority job requiring more resources which are not currently available. The idea of

backfilling is to reduce the idle time of the processors thereby trying to reduce the overall

processing time of the jobs waiting in the queue.

 Once jobs are assigned to all the processors, we arrange the possible start time for the next

job for each processor in the ascending order. The next job is assigned to the processor with the

earliest possible start time. This process is continued until all the jobs are processed. Then the

total job completion time is the latest completion time of a job in the queue.

To determine the quality of solution obtained, we make use of a lower bound proposed by

Siyambalapitiya and Sandirigama (2010 a). Let m be the number of jobs and n be the number of

Processors. Let ti be the estimated processing time for the ith job and

T be the total processing For all jobs. Then T= ti.𝑚
𝑖=1 If L is the lower bound, then

L=T/n. let C be the total time elapsed for the best feasible solution for the given problem, then

P=
𝑐−𝐿

𝐿
 100

Where p is the lower bound. Then, we can say that the optimal solution for the given problem

should lie within p% of the lower bound.

3. Proposed Algorithm (Decreasing Backfill-Gang Algorithm)

We state the proposed algorithm known as decreasing backfill-gang algorithm as follows:

 Step 1: From a queue of jobs by arranging the list of jobs in the descending order of job

durations.

 Step 2: Define the maximum allowed length of a thread. Divide the jobs into threads on this

basis. Compute the duration of threads for each job.

 Step 3: Start assigning jobs to processors according to the position of the job in the queue. If

the number of currently free processors is insufficient to schedule the next job in

the queue, move to the back of the queue and look for a job that requires

exactly the number of free processors. When such a job is found, stop moving

and bring this job to the front of the queue and schedule it. Other jobs in the

queue will be shifted to accommodate this job. If a job which fits exactly is not

available, select a suitable job that comes closest to this requirement.

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

43 | P a g e w w w . i j l t e m a s . i n

 Step 4: For each processor, compute the earliest possible start time for the next job. Arrange

start times for each processor in the ascending order. Assign jobs for processors

in the ascending order of earliest start times.

 Step 5: Continue assigning jobs to processors until all the jobs are scheduled. The job with

the latest completion time gives the total processing time for all the jobs.

4. Results and Discussion

Several test problems have been solved by the proposed decreasing backfill-gang algorithm.

These results were compares with the FCFS-gang algorithm proposed earlier

(Siyambalapitiya and Sandirigama, 2011). These results are shown in table 1.

Problem
number

Jobs Processors Threads
length

Lower bound FCFS-gang Decreasing
Backfill-
gang
algorithm

1 12 4 10 25 29.0 26.5

2 17 4 10 46 53.5 47.5

3 20 4 10 64 79.7 67.17

4 22 4 10 76 83.9 76.25

5 32 4 12 125 146.4 127.42

6 25 6 15 111 139.8 115.33

7 31 6 10 73 81.8 76.5

8 40 6 25 387 483.4 389.75

9 50 6 25 397 477.0 406.83

10 65 6 30 623 757.7 636.00

11 65 6 30 720 817.1 729.00

12 40 8 20 247 288.9 251.00

13 50 8 15 155 177.6 161.42

14 60 8 10 148 182.3 149.33

15 65 8 15 164 181.0 166.5

16 45 10 15 146 173.8 151.3

17 75 10 10 261 314.4 265.32

18 95 10 30 847 979.0 860.87

19 60 12 15 98.4 112.5 102.00

20 90 12 15 210 242.6 212.13

The percentage gap between the lower bound and the solution obtained from decreasing backfill-gang

algorithm is given in table 2.

 Table 1: Comparison of Performance of Different Algorithm

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

44 | P a g e w w w . i j l t e m a s . i n

 yes

 Figure 1: Flow chart for Decreasing backfill-Gang Algorithm

 Yes

 No

 Yes

 NO

 Start

 Enter m: no of processors

;

Enter list of jobs with duration

Arrange the jobs in the descending order of job duration

.determine the number of threads in each job

Start assigning jobs as arranged

above

Sufficient processors to

schedule current job?

move to back of the queue to find as to which job can be scheduled

with available processors in the best possible manner

Schedule this job. Shift the position of the remaining jobs in

the queue.

For each processor, compute the earliest

possible start time for the next job

Arrange earliest possible start times

in ascending order

Are there any

remaining jobs?

jobs with the latest completion time give

the total time for processing all the jobs

 Stop

Schedule

this job

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

45 | P a g e w w w . i j l t e m a s . i n

According to these results, we can observe that the solution to all the test problems lie within

6% from the relevant lower bound. In fact, 80% of the test problems have a percentage gap of

less than 4% from the lower bound. This shows that the optimal solutions should lie within this

range.

Conclusion

The above result show that the decreasing backfill-gang algorithm gives superior solution

compared to FCFS-gang algorithm. It is observed that the percentage gap is extremely good,

showing that the solutions obtained are extremely close to the optimal solutions. Therefore, It

can be concluded that the incorporation of backfilling into gang scheduling approach allows us

to obtain a promising solution method to solve multiprocessor scheduling problems.

Reference

1. Feitelson D G al. (2004), “parallel job scheduling –A status Report”, job scheduling

Strategies for parallel Processing, Lecture Notes in computer Science, Vol. 3834, pp. 1-16

2. Hou E S H (1994), “A Genetic Algorithm for multi-processor Scheduling”, IEEE

Transactions on parallel and Distributed system, Vol. 5, No. 2, pp. 113-120.

3. Siyambalapitiya R and Sandirigama M (2010), “A New Greedy Algorithm for

multiprocessor Scheduling”, Journal on Software Engineering, Vol. 1, No. 3, pp. 7-12.

4. Siyambalapitiya R and Sandirigama M (2011), “Improvements to First-Come-First-served

Multi-processor scheduling with Gang scheduling”, Journal on Software Engineering,

Vol. 5, No. 3, pp. 1-7.

5. Ullaman J D (1975), “NP-Complete Scheduling Problems”, Journal of Computer and

system Science, Vol. 10, No.3, pp. 384-393.

6. Ward W A et al. (2002), “Scheduling jobs on parallel Systems Using a relaxed Backfill

Strategy”, Job Scheduling Strategies for parallel Processing, Lecture Notes in Computer

Science, Vol. 2537, pp. 88-102.

7. Zhang Y et al. (2000),”Improving parallel Job Scheduling by Combining Gang Scheduling

and Backfilling Techniques”, 14th International Parallel and Distributed Processing

Symposium, Mexico, pp. 133-142.

Problem 1 2 3 4 5 6 7 8 9 10

% Gap 6.00 3.26 4.95 0.33 1.94 3.90 4.79 0.71 2.48 2.09

Problem 11 12 13 14 15 16 17 18 19 20

% Gap 1.23 1.62 4.14 0.92 1.52 3.63 1.66 1.64 3.66 1.01

 Table 2: percentage Gap between the lower bound and the decreasing backfill-Gang Algorithm

