
 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

46 | P a g e w w w . i j l t e m a s . i n

Disk Scheduling In Real Time Database Systems

Uma Shanker Jayswal* Gaurav Kumar Jain** Ravi Ranjan***

ABSTRACT

 In The Information age, information spreading worldwide through Internet, and Other medium, is bulk and changing

constantly and dynamic in nature. As Your society becomes more integrated to computer technology, Information

proceed for human activities necessitates computing that responds to request in real time rather than just with best

effort. In fact Database management systems have entered the internet age. If too many users approach for

information, than this degrades the system performance. The degradation may cause delay and trouble for particular

end user in assessing the information. Assessing Information in easy way and within certain time limit ,by keeping its

freshness, assessing users requirements and then providing them Information in time is important aspect.

Conventional databases are mainly characterized by their strict data consistency requirement. Database systems for real

time applications must satisfy timing constraints associated with transactions. The main objective of this paper is to

initiate an enquiry in disk scheduling for real time database systems. The proposed work implements the algorithms for

disk scheduling for real time database systems.

GENERAL PARAMETERS CONSIDER FOR ALGORITHM

DEVELOPMENT:

Deadline: Time by which execution of the task should
be Completed, After the task is released
Arrival Time: Arrival Time of transactions

Inter Arrival time

Average Execution time

Transaction Size

Slack Time: is an estimate of how long we can delay the

execution of transaction and still meet its deadline

Access Time: Access time =Seek Time+ Rotation

latency +Transfer Time

Where, Seek Time is the time for the disk to move the

heads to the cylinder containing the desired sector.

Rotation latency is the time waiting for the desk to

rotate the desired sector to the disk head.

Transfer time is the transfer time needed to transfer

data over the IO bus.

Priority: priorities can be assign by two ways .

Earliest Deadline: the transaction with the earliest

deadline has the highest property. A major weakness of

the police is that it can assign the highest property to

task that already has missed or is about to miss its

deadline

Least Slack: Slack time is an estimate of how long we

can delay the execution of transaction and still meet its

deadline. If s>=0 than we accept that if transaction is

executed without interruption then it will finish at or

before its deadline. Negative slack time results either

when a transaction has already missed its deadline or

when we estimate that it can note meet its deadline.

The slack time of a transaction which is not executing

decreases .hence the priority of that transaction

increases.

Real-Time Disk Scheduling Algorithms: The real time

disk scheduling algorithm like earliest Deadline First

(EDF), Priority scan (P-scan)-feasible deadline scan (FD-

Scan), Shortest seek and earliest deadline by ordering

(SSEDO) and shortest seek and earliest deadline by

value (SSEDV) are discussed in brief here.

EDF Algorithm: The earliest deadline first algorithm is

an analog of FCFS .Requests are ordered according to

deadline and the request with to the earliest deadline

serviced first. Assigning priorities transactions an

earliest deadline

 Policy minimizes the number if late

transactions in systems operating under low or

moderate levels of resource and data contention. This is

due to Earliest Deadline giving the highest priority to

transactions that have the least remaining time in which

to complete. However, the performance of Earliest

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

47 | P a g e w w w . i j l t e m a s . i n

Deadline steeply degrades in an overloaded system [3].

This is because, under heavy loading, transactions gain

high priority only when they are close their deadlines.

Gaining high priority at this late stage may not leave

sufficient time for transactions to complete before their

deadlines. Under heavy loads, then, a fundamental

weakness of the Earliest Deadline priority policy is that t

it assigns the highest priority to transactions that are

close to missing their deadlines, thus delaying other

transactions that might still be able to meet their

deadlines [1].

P-SCAN ALGORITHM

In priority Scan (P-Scan) all request in the I/O queue are

divides into multiple priority level, which means that

the disk serves any requests that is passes n the current

served priority level until there are no more requests in

that direction. On the completion of each disk service,

the scheduler checks to see whether a disk service, the

scheduler checks to see whether a disk request of a

higher priority is waiting for service [4]. If find, the

schedule switches to that higher level. In this case, the

request with shortest seek distance from the current

arm position is used to determine the scan direction. All

the I/O requests are mapped into three priority levels

according to their deadline information. Specially,

transactions relative deadlines are uniformly distributed

between LOW_DL and UP-DL, where LOW-DL and UP-DL

are lower and upper bound for transaction deadline

settings. If a transactions relative deadline is greater

than (LOW_DL +UP-SL) /2, then the transaction is

assigned a middle priority [2].

FD-SCAN ALGORITHM

In FD-Scan, the track location of the request

with earliest with earliest feasible deadline is used to

determine the scan direction. A deadline is feasible if

we estimate that it can be met. More specially, a

request that is n tracks away from the current head

position has a feasible deadline d if d >= t+ Access(n)

where t is the current time and Access(n) is a function

that yields the expected time needed to service a

request n tracks away. Each time that a scheduling

decision is made, the read requests are examined to

determine which have feasible deadlines given the

current head position. The request with the earliest

feasible deadline is the target and determines the

scanning direction. The head scans toward the target

servicing read requests along the way. These requests

either have deadline, later than the target request or

have unfeasible deadlines, ones that cannot be met. If

there is no read request with a feasible deadline, then

FD-SCAN simply services the closest read request. Since

all request simply services the closest read request.

Since all request deadlines have been (or will be)

missed, the order of service is no longer important for

meeting deadlines [4].

The SSEDO and SSEDV Algorithms re based on the

following Assumptions:

Let, ri: be the I/O request with the i-th smallest deadline

at a scheduling instance;

Di: be the distance between the current arm position

and requests ri’s positioning;

Li: be the absolute deadline of ri [2] [5].

 The two algorithms maintain a queue sorted

according to the absolute deadline, Li, of each request

in the queue, i.e., the window consists of m request

with smallest deadline.

SSEDO ALGORITHM

At a scheduling instance, the scheduler selects

one of the request from the window for service. The

scheduling rule is to assign each request a weight, say

wi for request ri, where w1 = 1, +w2 <=....wm and m is

the window size, and to choose one with the minimum

value of widi. We shall refer to this quantity widi as the

priority value associated with request ri. If there is more

than on request with the same priority value, the one

with earliest deadline us selected. It should be clear that

for any specific request, its priority value varies at each

scheduling instances, since di, ri’s position with respect

to disk arm position, is changing as disk arm moves.

 The idea behind the above algorithm is that we

want to give requests with smaller deadlines higher

priorities so that they can receive service earlier. This

can be accomplished by assigning smaller values to their

weights. On the other hand, when a request with large

deadline is “Very” chose to the current arm position

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

48 | P a g e w w w . i j l t e m a s . i n

(which means less service time), it should get higher

priority. This is especially true when a request is to

access the cylinder where the arm is currently

positioned. Since the cylinder where the arm is this case

and we are assuming the seek time dominates the

service time, the service time can be ignored. Therefore

these requests should be given the highest priority.

There are various ways to assign these weights. The

weights can simply set to

ὼi = βi-1 (β≥1) I = 1,2,3….m.

where β is an adjustable scheduling parameter. Note

that wi assign priority only on the basis of the ordering

of deadlines, not on their absolute or relative values [2].

SSEDV ALORITHM

In the SSEDO algorithm described above, the

scheduler uses only the ordering information of request

deadlines of successive requests in the window. For

example, suppose there are two requests in the

window, and r1’s deadline is very close but r2’s deadline

is far away. If r2’s position is “very” close to the current

arm position, then the SSEDO algorithm might schedule

r2 first, which may result in the loss of r1. However, if r1

is scheduled first, then both r1 and r2 might be served.

On the other extreme, if r2 deadline is almost same as

r1’s and the distance d2 is less than d1 but greater than

d1/β, then SSEDO will schedule r1 for service and r2 will

be lost. In this case, since there could be loss any way, it

seems reasonable to serve the closer one (r2) for its

service time is smaller. Based on these considerations,

we expect that a more intelligent scheduler might use

nit only the deadline ordering information but also the

deadline value information for decision making. This

leads to the following algorithms: associate a priority

value of α (0 ≤ α ≤1) is a scheduling parameter.

 A common characteristic of SSEDV and SSEDO

algorithm is that both consider time constraints and

disk service times. Which part play the greater role in

decision making can be adjusted by tuning the

scheduling parameters α or β, depending on the

algorithm [2] [5].

1. EDF Algorithm Design:

1) Sort transaction on deadline in increasing order.

[repeat step 2 and 3 till no more transactions in

queue]

2) [set start time, end time, seek time. Current head

position, total transaction time, turn around time

for all the transactions in the queue]

a) For all transactions set start time = actual arrival

time

b) For all transaction set the following parameters

set start time = end time [except first

transaction set seek time = blocked accessed –

current head position

Set total transaction time = seek time + transmission

time

Set end time = start time + total transaction time set

turn around time = end time –actual arrival time

3) [check transaction is miss or hit]

If (end time > deadline) Set successful = false else

set successful = true end if

4) Exit

2. FD _SCAN Algorithm:

1) Short t transaction on deadline in increasing order.

[repeat steps 2 and 3 till no more transactions in

queue]

2) [ser start time, end time, seek Time, current head

position, total transaction time, turnaround time for

all the transactions in the queue]

a) For first transaction set start time = actual arrival

time.

 c) For all transactions set the following parameters. Set

start time = end time [except first transaction] set

current Head position = blocked Accessed

Set seek time = blocked accessed – current head

position

Set total transaction time = seek time = transmission

time

Set end time = start time + total transaction time set

turn around time = end time –actual arrival time

 3) [check transaction is miss or hit]

If (end Time > deadline)

Set successful = false

Set end time =start Time

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

49 | P a g e w w w . i j l t e m a s . i n

Else

Ser successful = true

End if

4) Exit

P-SCAN Algorithm:

Construct three queue namely MIN [100], MID [100],

MAX [100] to store the transaction with minimum,

middle or maximum priorities.

[set LOW_DL and UP-DL]

Set LOW_DL =min Deadline

Set UP_DL = max deadline

Repeat steps 4 and 5 till no more transactions

[store the transaction in the corresponding queue i.e.

MIN, MID, MAX]

If dead Line > (LOW_DL + UP_DL) / 2

MIN[I] = dead Line

I = i+1

Else

If deadline < (LOW_DL + UP_DL) / 4

 MAX[j] = deadline

J =j+1

Else

 MID[k] = deadline

End if

[set start time, end time, seek time, current head

position, total transaction time, turn around time for all

the transactions in the MAX queue]

a) for first transaction set start Time = actual Arrival

Time

b) for all transactions set the following parameters set

start Time = end time [except first transaction]

Set current Head Position = Blocked Accessed

Set seek Time = blocked Accessed – current Head

position

Set total transaction time = seek Time = transmission

time

Set end Time = start Time + total Transaction Time set

turn Around Time = end Time – actual Arrival Time

1) [set start Time, end time, seek Time, current Head

Position, total transaction Time, turn Around Time

for all the transaction Time, turn Around Time for all

the transactions in MID queue]

[for all transactions set the following parameters]

Set start Time = end time

Set current Head Position = blocked Accessed

Set seek Time = blocked Accessed – current Head

Position

Set total Transaction Time = seek Time +

transmission Time

Set end time= start Time + total Transaction Time

Set turn Around Time = end Time – actual Arrival

Time

2) [set turn Time, end Time, seek Time, current Head

all the Position, total Transaction time, turn Around

Time for all the transaction in MIN queue]

[For all transactions set the following parameters]

set start Time = end Time

set current Head Position = blocked Accessed

set seek Time = blocked Accessed – current Head

Position

set total Transaction Time seek + transmission Time

set end time = start Time + total Transaction time

set turn Around Time = end Time – actual Arrival

Time

3) [check transaction is miss or hit in MAX queue]

If (end Time > deadline)

Set successful = start time

Else

Set successful = true

End if

4) [check transaction is miss or hit in MID queue]

If (end Time > deadline)

Set successful = true

End if

5) [check transaction is miss or hit in MIN queue]

If (end time > deadline)

Set successful = false

Else

Set successful = true

End if

6) Exit

3. SSEDO Algorithm:

1) Sort t transaction on deadline in increasing order.

2) [set state Time, end Time, seek Time, current head

Position, total Transaction Time, turn Around Time

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

50 | P a g e w w w . i j l t e m a s . i n

fir the transactions with minimum deadline in the

queue]

Set start Time = actual Arrival Time

Se current head Position = blocked Accessed

Set seek time = blocked Accessed – current head

position

Set total Transaction Time = seek Time + transmission

Time

Set end Time = start Time + total Transaction Time set

Turn Around time = end Time – actual arrival Time

3) [find transaction with seek time within (TV)

threshold]

4) For all the transactions in the queue with seek time

within threshold (TV)

If ((blocked accessed – current head position) < =

tv)

Set current Head position = blocked Accessed set

seek Time – current head Position

Set total transaction Tie = seek Time = transmission

Time

5) Go to step 3

6) [check transaction is miss or hit]

If (end time > dead line)

Set successful = false

Else

Set successful = true

End if

7) Exit

4. SSEDV Algorithm:

1) Sort transaction on deadline in increasing order.

2) [set start Time, end time, seek time, current

head position, total transaction time,

turnaround time for the transactions with

minimum deadline in the queue]

Set start time = actual arrival time

Set current head position = blocked accessed

Set seek time = blocked accessed – current head

position

Set total transaction time =seek time + transmission

time

Set end time around time =end time – actual arrival

time

3) [find transaction with seek time within (tv)

threshold]

For all the transactions in the queue with seek tie

within threshold (tv)

If ((block accessed – current head position) <= tv)

Tot exec Time = tot Exec time + total transaction

time

If (totExec time > 0 AND tot Exec time < min

deadline)

For all the transactions in the queue

If ((block accessed –current head position) <= tv)

Set start time = end time

Set current head position = blocked accessed

Set seek time = blocked accessed – current head

position

Set total transaction time = seek time transmission

time

Set end time = start time = total transaction time

Set turnaround time = end time – actual arrival time

4) So to step 3

5) [check transaction is miss or hit]

If (end time > deadline)

Set successful = false

Else set successful = true

End if

6) Exit

CONCLUSION:

After developing the Algorithms for real-time disk

scheduling problem it is observed that in EDF

transactions are ordered according to deadline and

the request with earliest deadline is services first.

Priority Scan divides all the request in the I/O queue

the scan algorithm then serves any request that is

passes in the current served priority level until there

are no more request in that direction. In FD-SCAN,

the track location of the request with earliest

feasible deadline is used to determine the scan

direction. In the SSEDO algorithm, the scheduler

uses the ordering information of request deadlines,

 Volume II, Issue III, March 2013 IJLTEMAS ISSN 2278 - 2540

51 | P a g e w w w . i j l t e m a s . i n

whereas SSEDV use the difference between

deadlines if successive requests in the window.

 The results of the comparison shows that,

performance of SSEDV is better than SSEDO, since

the SSEDV uses more timing information than the

SSEDO for decision making. P-SCAN and FD-SCAN

perform essentially at the same level, with one

better at high load cases, but worse for low load

cases. The EDF algorithm is good when the system is

lightly loaded, but it degenerates as soon as load

increases.

REFERENCES:

[1]. R. Abbott and H. Garcia-Molina, “Scheduling

real time transaction: a performance evaluation ”,

proceedings of the 14th VALDB Conference, Los

Angeles, California, (1998).

[2]. Value Based Scheduling In real time database.

Systems. Jayant R. Haritsa, Michael J. Carey, and

Miron Livny. Received(1991).

[3]. Kao, B. and Garcia-Molina, H.,” overview of real

time database systems,” in advances in real time

systems (ed.S.H.Son), (1995)463-86.

[4]. “Evaluation of scheduling algorithm for real

time disk I/O”-YIFENG Zhu, department of computer

science and engineering, university of Nebraska-

Lincoln,(2002).

[5]. Shenze Chen, Joh A. Stankovic, James Curose

and Don Towsley, “performance evaluation of two

new disk scheduling algorithm”, The Journal of real

time system, (1990).

