
 Volume II, Issue V, May 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 48

Design a MAC address based Authentication Protocol for Efficient Group Key Agreement

 Babloo Kumar, Research Scholar
1 JNIT, Jaipur. Pranam Goyal

2
, Associate Prof. SBNIT, Jaipur.

 bablook61@gmail.com gpranam@gmail.com

Abstract- The authentication protocols based on classic

cryptography use public-key cryptosystems for establishing the

common key and some of them have been proven to be secure

but they require high amount of resources and they need large

keys. This kind of protocols is secure enough even if a small

key is used this is another advantage. In this paper we presents

secure cryptographic authenticated group key transfer

agreement and performance evolution of MAC addresses based

protocol for distributed network environment. The protocol is

developed for group communication and every member of the

group has secret information and the communication start

when all this information is put together. So, without online

two members can’t communicate to each others. We, also,

present some situations where this kind of protocol is needed.

It’s well known that in wireless LAN, authenticating nodes by

their MAC addresses is secure since it’s not easy for an

attacker to learn one of the authorized addresses and change

his MAC address accordingly. In order to the MAC address

prevent spoofing attacks, we propose to use dynamically

changing MAC addresses and make each address usable for

only one session. The scheme we propose does not require any

change in 802.11 protocols and incurs only a small

performance overhead. One of the nice features of our new

scheme is that no third party can link different communication

sessions of the same user by monitoring MAC addresses

therefore our scheme is preferable also with respect to user

privacy.

Keywords: Authentication protocol, MAC addresses,

 Cryptosystem, Group key transfer protocol.

 I.INTRODUCTION

MAC addresses have long been used as the singularly

unique layer to network identifier in LANs. Through

controlled, the organizationally unique identifiers (OUI)

allocated to hardware manufacturers, globally unique

MAC addresses for all LAN-based devices use in many

cases today., the MAC address of a workstation is used

as a unique identifier or as an authentication factor for

granting varying levels of network or system privilege to

a user. This method of client tracking and authentication

is also employed in wireless 802.11 networks. Wireless

LANs targeted by attacker’s utilization of the ability to

change their MAC address to circumvent network

security measures: an attacker with minute skill might

alter their MAC address in an effort to masquerade or

hide their presence, MAC address to one that is

otherwise authorized to bypass access control lists or to

escalate network privileges [1]. In this paper, I

demonstrate two methods of detecting wireless LAN

MAC address spoofing. I also show how these methods

can be used to detect the activity of devious WLAN

attack tools.
1.1 Changing MAC Addresses

The phrase “MAC address spoofing” in this context

relates to an attacker altering the manufacturer-assigned

any other value of MAC addresses. This is different

conceptually than traditional IP address spoofing where

an attacker sends data from an arbitrary source address

and does not expect to see a response to their actual

source IP address. The spoofing of MAC address might

be more accurately described as MAC address

“impersonating” or “masquerading” since the data is not

crafted by attacker with a different source than is their

transmitting address. They continue to utilize the

wireless card for transport purpose to its intended layer,

transmitting and receiving from the same MAC source

When an attacker changes their MAC address [2-3]. All

802.11 cards in use permit their MAC addresses to be

altered, often with full drivers and support from the

manufacturer. By using the Linux open-source drivers,

MAC address can be changed by users with the ifconfig

tool, or calling the ioctl() function with the

SIOCSIFHWADDR flag with a short C program.

Commonly windows users are permitted to change their

MAC address by properties of their network card drivers

selecting in the network control panel applet. An attacker

may choose to alter their MAC address for several

reasons, their presence including obfuscating on a

network, to bypass access control lists, or to abbreviate

an already authenticated user. Each is explained in

greater detail as follows:

A. Obfuscating network presence

An attacker might choose to change their MAC address

in an attempt to evade network intrusion detection

systems (NIDS). A common example is an attacker

executing a brute- force attack script with a random

https://mail.google.com/mail/u/0/h/4fak1jg2nsqx/?&v=b&cs=wh&to=gpranam@gmail.com
http://www.merriam-webster.com/dictionary/abbreviate

 Volume II, Issue V, May 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 49

MAC address for each successive connection attempt.

Such an attack would go undetected by network activity

analysis applications such as Net Flow that report upper-

layer network activity or large quantities of traffic from a

single source address.

B. Bypassing access control lists

Used as a basic form of access control on WLANs,

administrators typically have the option to configure

access points or neighboring routers to permit only

registered MAC addresses to communicate on the

network. An attacker could circumvent this form of

access control by passively generate a list of MAC

addresses and monitoring the network that are authorized

to communicate., an attacker is free to set their MAC

address to any of the authorized addresses, bypassing the

intended security mechanism with the list of authorized

MAC addresses in hand [4-5].

C. Authenticated user impersonation
Certain hardware WLAN security authentication devices

rely on matching user authentication credentials to the

source MAC address of a client. After a successfully

authenticated user, the security gateway permits traffic

based on a dynamic list of the authorized MAC

addresses [6, 7, and 8].

II. Proposed Related Work

Group communication arises in many different settings,

from low-level network groupware, and other

multicasting to conferencing applications. Security

services are needed to provide integrity and

communication privacy. These services are not possible

without a secure and efficient key distribution,

authentication, and other mechanisms. In a secure

communication, group members need a common group

key to protect their messages exchanged as well as group

key management for the distribution and computation of

the GK., delivery of messages over the network to the

right destination cannot be guaranteed unless the

co/mmunication channel is secure. Group key

management is a building block to provide such

assurance. There are two types of schemes in group key

management, group key distribution and group key

agreement [9]. The group key distribution is assigned to

one member in the group who then becomes the key

distribution center. He/she computes the GK and

distributes it to each member in the group. The group

key agreement is suitable for peer-to-peer group

communication [9]. In these groups the group key

agreement protocol ensures that each member has an

equal opportunity for generating the GK. One member

takes the role of the Group Controller (GC), collects all

the members’ blind keys (public keys), broadcasts the

group key computation tree structure to all members, and

controls the overall group key computational processes.

III. Distributed Group Key Distribution (DGKD): a

new class of GKM Protocols

A. Principle and assumption

There are some assumptions in existing schemes. In

CGKD/DGKM, a secure channel is assumed to exist

between the GC/SC and each of the potential group

members/subgroup members. This secure channel is

generally implemented by public key cryptosystems. In

CGKA, which is typically based Die-Hellman key

exchange which users from the Man-in-the-Middle

attack, it is assumed that each group member is equipped

with some authentication capability which is also

implemented by public key cryptosystems. Similarly,

DGKD assumes that every group member has a publicly

known (unforgivable) public key. The new DGKD

protocol adopts a tree structure and utilizes three basic

mechanisms to implement distributed key generation and

distribution: 1) the leaf key of a node is the public key of

the corresponding group member and all the

intermediate nodes' keys are secret keys, 2) the sponsor

of a joining or leaving member initiates the key

generation and rekeying process and sends the new keys

to co distributors (i.e., the first round), 3) the co-

distributors then help distribute the new keys to group

members in a distributed/parallel manner (i.e., the

second round). All group members have the equally

trusted and same capability is. Also, they have equal

responsibility, i.e. any group member could be a

potential sponsor of other members or a co-distributor

(depending on the relative locations of the member and

the joining/leaving members in the tree). Thus there is no

dependence on a single entity and even if a sponsor node

fails a new sponsor for the joining/leaving member is

chosen by other members. This improves the robustness

of the protocol [10, 11, and 12].

B. Sponsor

A sponsor is a member and the sponsor of a sub tree is

defined as the member hosted on the rightmost leaf in

the sub tree (note: \rightmost" can be equally replaced

with \leftmost"). Every node has an associated sponsor

field as shown in Figure 1. The sponsor field at a

particular node is updated when it is along the joining or

leaving member's path. We show the joining algorithm

for updating the sponsor field in Figures 2. When a

member joins, the sponsor field along the joining

member’s path is updated from bottom to the root. If the

new member’s id is greater than the sponsor id of the

node then update the sponsor id with the new member's

id. This is continued until the root (See Figure 3). When

m7 joins, the sponsor field along its path is up dated. The

sponsor id of the node k6-7 is lesser than the id of m7, so

it is updated to 111. Similarly the sponsor id's of nodes

 Volume II, Issue V, May 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 50

k4-7 and k0-7 are updated to 111. Whenever the Sponsor

id for a node is greater than

 Fig.1. sponsor for each node showing by a tree.
the joining member’s id then the check can be stopped.

When a member leaves, every member checks along the

path of the leaving member to update the sponsor lD. if a

node has

 Every member

 - the joining members iterate over all the nodes

 Path from leaf to the root

 -if the id is greater than the sponsor id

 for that node joining members

 -sponsor id = members id joining

-continue

- else

-break the leaving member as the sponsor then they

update the sponsored ld with the sponsor id/member id

of the other child if exists. This continues up to the root

(See Figure 4). When m7 leaves, the sponsored ld along

its path is updated. Since the leaving member is the

sponsor all along its path, the sponsor ld has to be

updated by checking for the new sponsor for all the

nodes, m6 becomes node k6-7 for the new sponsor. For

node k4-7 the member ids of both its children are

compared and the new sponsor greater becomes, in this

case m6. This is continues until the root [13-14].

C. Co-distributors

When a sponsor changes the keys along the path, it

needs to distribute them. The sponsor has to distribute

the keys to all the members whose keys have been

changed. But it does not know the keys along the other

paths to distribute the new keys. So, a co distributor is

required to distribute them. The co distributor is the

sponsor of a node on another path whose key is not

known to the original sponsor. The sponsor encrypts the

changed key with the co distributor’s public key and

broadcasts this information. Thus, the co-distributor

helps the sponsor in distributing the changed common

keys along the other paths.

 Fig.2. when a member joins field then updating the sponsor.

 Fig.3. when a member leaves field, updates a sponsor.

D. Initial group key generation and distribution

Protocol
Suppose n members m1... mn decide to form a group.

They build a virtual key tree and select a sponsor to

decide an order in which they join the tree. Every

member updates the key tree by adding members in the

key tree based on that order and they update the sponsor

field in all the intermediate nodes. Then every member

checks if it is responsible for generating any keys along

its path. If so, it generates them and distributes the keys

either directly or with the help of co-distributors. When

two sponsors are responsible for generating the same key

then the rightmost among them generates it. As more

members join the key tree the sponsors and the height of

the key tree increase. As illustrated in Figure 4, m7, m5,

m3 and m1 are responsible for generating the keys.m7

generates the entire key (k6-7, k4-7, and k0-7) along its

path to the root. Then it encrypt it as
  ,670,74,76 pkkkk  an where k4-5 is

generated by m3 in the left sub tree along its path and the

 Volume II, Issue V, May 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 51

root key which is generated by the right most sponsor

m7 is sent to the co-distributor of the left sub tree m3 as

follows.  370 pkk 

 Fig.4. Example of Initial key generation
is broadcast and m3 will decrypt k0-7 and encrypts it as
  3070  kk and broadcasts it. Thus every member

has the newly generated keys along its path. Only two

rounds are required for this protocol, one round for

generating keys and distributing along the path and

another for co distributors to distribute them.

E. Join protocol

Step.1-- New member broadcasts request for join

 Mn+1(PKn+1) m1,…mn

Step.2--Each member

 - adding a new member node for updates the key

 tree

 Find for joining sponsor member:

 - if sibling present, sponsor =sibling

 - else sponsor = mn+1

 - field along the path of the joining member to

 the root if required is updated by the sponsor.

Step.3-- If joining member's sponsor is it self

- generates new secret keys along the joining member’s

 path and distribute them to other members co-

 distributors and to directly by encrypting with common

 key and broadcasting

Step.4--If co-distributor is itself

- Joining members sponsor with appropriate key and

 Broadcast sent encrypt the key

Suppose there are n members in the group m1,......,mn. a

new member mn+1 make a join request by broadcasting

its public key PK. The rightmost member in the key tree

authenticates the new member, decides the insertion

location for the new member and broadcasts this

information to other members. Additionally the

rightmost member also sends the virtual key tree and list

of public keys of other members to the new member. All

other members update the key tree by adding a new

member node in the specified location. Then every

member checks to see if it is the sponsor of the joining

member[15-16]. If the new member has a sibling it

becomes the sponsor and generates new keys along the

path. If there is no sibling then the joining member itself

becomes the sponsor and generates the new keys along

its path and distributes them. Members update the

sponsor field appropriately if required. Figure 6

describes the join protocol and Figure 5 shows the

protocol operation when a new member joins. When a

new member joins, m7 determines the position (i.e., m5)

and places the member there. m7 broadcasts the position

of the new member to other members. All members also

determine that m4 is the sponsor of m5. So the rekeying

process m4 initiates as follows: 1) generates new keys

k’4-5, k’4-7and K’0-7. 2) after determining the co-

distributors m3 and m7, encrypts as follows and

broadcasts:  770',74' pkkk 

 Fig.5. A new member joins m5, m4 is sponsor and m3, m7 are co-
 distributors.

  370' pkk  3). m3 will decrypt k’0-7 and encrypt it as

  3070'  kk and m7 will decrypt k’4-7 and k’0-7 and

encrypt them as   7674'  kk and   7470'  kk 4).

m4 also encrypts and sends the keys to m5 as
  570',74',54' pkkkk  . As a result, all the members

will get the new keys. When a new member joins, only

the keys along its path to the root have to be changed and

distributed, which can be achieved in two rounds with at

most log2n keys being changed.

F. Leave protocol

Step.1-- Each member

 - removing the leaving member node to updates the

 key tree

 - Appropriately along the leaving member’s path if

 required updates the sponsor field

 -determination of the sponsor for changing keys

 along the leaving member’s path

 Volume II, Issue V, May 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 52

Step.2-- the leaving member is itself sponsored

 - new secret keys generates to distributes them

 and to co-distributors and along the path directly

 to other members

Step 3: If co-distributor is itself : broadcasts the key sent

by the leaving members Sponsor by encrypting it with

the appropriate key

Assume that member ml leaves the group. Every

member updates the key tree by deleting node ml and

updates the sponsor field along the path if required. Then

they determine the sponsor who generates new keys

along the leaving member’s path and distributes them

[16-17]. If the leaving member does not have a sibling

then the first sponsor along the leaving member’s path

becomes responsible for changing the keys along the

leaving member's path AS fig. 6

 Fig.6. A member m5 leaves.
As shown in Figure 6, when a member m5 leaves, all the

members will remove the node and determine that m4 is

the sponsor of m5. When a member leaves only the keys

along its path to the root have to be changed and

distributed, which can be achieved in two rounds with at

most log2n keys being changed.

G. Multiple joins protocol

 Suppose m new members join, they make a join request

by broadcasting their public keys. The rightmost member

in the key tree authenticates the new members, decides

the locations for all the new members such that minimal

number of keys is changed and broadcasts this

information to other existing group members. The

rightmost member also sends the virtual key tree and

existing members public keys to the joining members.

Every member upon receiving this message updates its

key tree by adding m new nodes in the determined

positions [18]. In order to perform multiple joins in one

aggregate operation, it is required to find the common

keys shared by the joining in efficient way to the

members. To achieve that we use an already proposed

scheme, an efficient and scalable key tree based dynamic

conferencing scheme called KTDC in [19] which uses an

efficient algorithm for computing the shared keys. There

will be multiple sponsors responsible for changing the

necessary keys. But here the shared keys which both

sponsors have in common and which need to be changed

will be changed by the rightmost sponsor among the

sponsors.

Step.1--Each member

 - New member nodes updates key tree by adding

 - all the paths of updates along the sponsor field

 Joining members

 - need to be changed the computes keys

 - who are responsible for changing these keys

 determines the sponsors

Step.2-- one of the joining members is itself for sponsor

 -changes the secret keys along the joining

 member’s path and distributes them to other

 members and directly to the co-distributors

 -, check if right sponsor is itself if same key has to

 be changed

 -change the key and distribute if rightmost

sponsor

Step.3--If the itself co-distributor

 - the joining members sent broadcasts the key

sponsor by encrypting it with the appropriate key As

shown in Figure 7, when new members join, m7 will

determine

the available positions (i.e., m0, m1, m4, m5) and place

the members there. m7 broadcasts this information to

other group members. All members also know that m5 is

the sponsor of m4 and m1 is the sponsor ofm0. They also

Fig.7 joins new member’s m0, m1, m4 and m5.
know that m3 and m7 are responsible for sending the key

tree structure and the public key list to the joining

members. Since all the operations are done in parallel,

rekeying can be achieved in two rounds by all the

sponsors. When a network event causes all the

previously occurred partitions to reconnect this is called

a merge. Merge is similar to multiple join and this can

also be achieved in two rounds which is better than that

in TGDH.

H. Multiple leaves protocol

Step.1--Each member

- by removing all leaving member nodes updates the

 Volume II, Issue V, May 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 53

updates the key tree key tree

- the sponsor field along all the leaving members paths

 updates if required

 - the sponsors determines to responsible for changing

 the Keys along the paths

Step.2--If sponsor for one of the leaving member is itself

-generates new secret keys and distributes them to

Co-distributors and other members directly

-if same key has to be changed, check if right

sponsor is itself

- if rightmost sponsor, change the key and distribute

Step.3--If co-distributor is itself When multiple members

leave, every member updates its key tree by deleting

those member nodes and the sponsor fields along all the

paths. Then they determine the keys that need to be

changed and the sponsors responsible for changing those

keys. There will be multiple sponsors and each sponsor

regenerates the keys and distributes them. If two

sponsors are responsible for changing the same key then

the rightmost among the sponsors will change the key :

broadcasts the key sent by the leaving members sponsor

by encrypting it with the common key when several

members m0, m1, m4 and m5 leave, every member

 Fig.8. m0, m1, m4 and m5 leave Members
updates its key tree by deleting those member nodes.

Every member also determines that m3 and m7 are the

sponsors. In case of a network failure which causes

disconnectivity, the group gets split and this partition can

be dealt with as a multiple leave operation [20-21]. Thus,

even for network partition the protocol requires only two

rounds for regenerating and distributing the keys. This is

a great improvement compared to TGDH which requires

several rounds.

I. Authentication in DGKD

Most CGKA protocols do not contain an authentication

component. Furthermore, the authenticated CGKA

protocols are non-dynamic and/or non-scalable. In

contrast, the new DGKD protocol is not only scalable

and dynamic but also able to provide easy and strong

authentication.

 IV. Discussions

We discuss the performance and security of our protocol

in this section and analyze the computation and

communication costs for leave, multiple join, join and

multiple leave operations. Tree based Group Di_e-

Hellman (TGDH) is one of the most typical CGKA

protocols in terms of efficiency and scalability, so we

focus on the comparison between DGKD and TGDH.

Key generation is independent, i.e., only the sponsor is

involved, thus there is no need for synchronization with

other members which is required in TGDH. In this sense,

DGKD is more resilient to network congestion, delay

and failure than TGDH. DGKD also has strong yet

simple authentication. It is also collusion free because

the new keys are independent of the old keys and no

matter how many members collude they cannot get the

keys [20]. Thus, it is unconditionally secure. Both

TGDH and DGKD require two rounds for single join

and leave operations. As for multiple join and leaving

operations, DGKD requires two rounds but TGDH

requires log(p) rounds where p is the number of

members involved. DGKD uses public key encryption

for sending the keys to co-distributors and secret key

encryption for further distribution of keys (from the co

distributors to the members). TGDH requires

performing modular exponentiations which is in the

same complexity as the public key encryption. In

summary, DGKD is comparable and in some cases

better than TGDH in terms of communication and

computation costs [21].

V. Conclusion

We proposed a new class of GKM protocols for SGC

with strong yet simple capability of authentication. The

proposed protocol solves some serious problems in the

existing protocols and is simple, scalable, efficient and

robust. The future work is to test and the implement

new protocol.

Reference

[1], C.-Y. Chou, J.C Lin, F. Lai, and K. P. Wu, “A

distributed key management protocol for dynamic

groups," 27th Annual IEEE Conference on Local

Computer Networks, pp. 0113-0122, Nov. 2002

[2], D. Liu ,P. Ning, and K. Sun, “Cryptographic

protocols/ networks ecurity: Enceinte self-healing group

key distribution with revocation capability" Proceedings

of the 10th ACM conference on Computer and

communication security, pp. 231-240, Oct. 2003.

 [3] D. Hutchison and S. Rafaeli, “Hydra: A

decentralized group key management" Eleventh IEEE

International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enter prises, pp. 62-67,

June 2002.

 Volume II, Issue V, May 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 54

[4] Y. Desmedt and M. Burmester, “Ancient and secure

conference key distribution" Security Protocols

Workshop, pp. 119-129, 1996.

[5] L. R. Dondeti, “Enceinte private group

communication over public networks," Phd.

Dissertation, CSE UNL, 1999.

[6] I. Ingemarsson, D. Tang and C. Wong, “A

conference key distribution system," IEEE Transactions

on Information Theory, vol. 28, pp. 714-720, Sept. 1982.

[7] D. Steer, L. Strawczynski, M. Wiener, and W. Di_e,

“A secure audio teleconference system," Advances in

Cryptology CRYPTO'88, LNCS, Springer-Verlag, vol.

403, pp. 520-528, Aug. 1990.

[8] G. Tsudik, M. Steiner and M.Waidner, “Di_e-

Hellman key distribution extended to group

communication," ACM Conference on Computer and

Communications Security, pp. 31-37, Mar. 1996.

[9] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-

tolerant key agreement for dynamic collaborative

groups" In Proceedings of the 7th ACM Conference on

Computer and Communications Security, pp. 235-244,

Nov. 2000.

[10] A. Perrig, Y. Kim, and G. Tsudik,

“Communication-enceinte group key agreement," In

Information System Security, Proceedings of the 17th

International Information Security Conference IFIP

SEC'01, pp. 229-244, June 2001.

[11] A. Bakkardie, “Scalable multicast key distribution,"

RFC 1949, 1996.

[12] B. Chor and A. Beimel, “Interaction in key

distribution schemes," Advances in Cryptology -

CRYPTO'93, LNCS, Springer, Berlin, vol. 773, pp. 444-

457, 1994.

[13] A. Beimel and B. Chor, “Communications in key

distribution schemes," IEEE Transactions on

Information Theory, vol. 42, pp. 19-28, 1996

[14] R. Blom, “An optimal class of symmetric key

generation systems," Advances in Cryptology -

EUROCRYPT'84, LNCS, Springer, Berlin, vol. 209, pp.

335-338, 1985.

[15] A. Cresti and C. Blundo, “Space requirements for

broadcast encryption," Advances in Cryptology

EUROCRYPT'94, LNCS, Springer, Berlin, vol. 950, pp.

287-298, 1995.

[16] C. Blundo, L. A. F. Mattos, and D. R. Stinson,

“Generalized Beimel-Chor scheme for broadcast

encryption and interactive key distribution," Theoretical

Computer Science, vol. 200, pp. 313-334, June 1998

[17] A. Herzberg, C. Blundo, A. D. Santis S. Kutten, U.

Vaccaro, and M. Yung, “Perfect secure key distribution

for dynamic conferences," Advances in Cryptology -

CRYPTO'92, LNCS, Springer, Berlin, vol. 740, pp. 471-

486, Aug. 1993.

[18] Y. Desmedt and M. Burmester, “A secure and

enceinte conference key distribution system" Advances

in Cryptology EUROCRYPT'94, LNCS, Springer,

Berlin, vol. 950, pp. 275-286, May 1995.

[19] I. F. Bob Briscoe, “Nark: receiver-based multicast

non repudiation and key management" Proceedings of

the 1st ACM conference on Electronic commerce, pp.

22-30, Nov. 1999.

[20] H. Bettahar, Y. Challal, and A. Bouabdallah,

“Sakm: a scalable and adaptive key management

approach for multicast communications," ACM

SIGCOMM Computer Communication Review, vol. 34,

pp. 55-70, Apr. 2004.

[21] W. Chen and L. R. Dondeti, “Recommendations in

using group key management algorithms," DARPA

Information Survivability Conference and Exposition,

vol. 2, pp. 222-227, Apr. 2003

Authors Profile:
Mr. Pranam Goyal was born in
Bikaner, Rajasthan, India, in
1973. He received the M. Tech.
degree in Computer Science
and Engineering and the Ph.D.
degree submitted at Birla
Institute of Technology, Mesra,
Ranchi in 2011.Since 2009, he
has been an Associate
Professor and Head of
Department at Shri Bhawani

Niketan Institute of Technology and Management,
Jaipur. His research areas are in Knowledge
Management Technologies.

Babloo Kumar was born in

meerut,utter pradesh, in 1979. He

received the B.Tech degree in

computer engineering from UP

Technical University, in 2005,

and currently pursuing M.Tech.

degree from the jagannath

university. His research areas are

innetwork security.

