
 Volume II, Issue VI, June 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 42

Empirical Study on the Operation of Defects through

Novel Testing Rules
Prakash Kawar Asawat

1
 Krishan Kant Lavania

2

1
M.Tech, Computer Science Engineering, Arya College of Engineering Jaipur, Rajasthan

2
Assosiate Professor -CSE Dept., Arya College of Engineering Jaipur, Rajasthan

 1prakash.asawat@gmail.com
2
klavania@gmail.com

Abstract— Current scenario of research shows that testing is a

valuable area for every project to guarantee its quality and

performance at actual behaviour. Before starting to test a system

we first known literature about the remaining problem in

project, due to this problem the performance and quality of

project may not capture its planned area. So we first search out

few of common error in the project. For that we need to clarify

the concept of defect, error, fault, failure and other relevant to

affect the system performance. In this paper we proposed simple

and valuable stages for testing to capture common error and

increase the performance of system. The paradigm of actual

defect helps to classify the fault type. At last we summarize the

paper and concluded with features scope.

Keywords:- defect, testing, error, fault, principals.

I. INTRODUCTION

Now-a-days, all the output affected by defects & other terms

relate to defects. In medical minor defects in CT scan made

the changes in doctors decision a big mistake may occurred.

May be patent advised to take a harmful medicine. Similarly

in system, a defect makes changes in output performance of

real time system and they may crash. A lot of money with

human body may affected from this crashed. It means the

minor defect may create a big problem & mostly person

affected from it. It means, it’s important to create a framework

for defects, so that peoples can easily understand them and

may save the harm. Therefore we create a framework and

focused to procedure with UML diagram for defects.

Computer system is affected by defects. The other terms are

also involved to create the problems in system performance

that is fault, failure, error etc. The actual 'mistake' in the

program code is known as fault & the variation from expected

behaviour observed by the user as a result of the error is call a

failure. Error is the bad state into the system that results from

the fault. The definition of these term are varies according to

situation. The IEEE gave standard definition of these terms as,

Failure- External behaviour is incorrect. It is the inability of a

system or component to perform required function according

to its specification. Fault- Discrepancy in code that causes a

failure. It is a condition that causes the software to fail to

perform its required function. And Error- Human mistake that

caused fault.

II. HISTORICAL PERSPECTIVE

Defect is the dieses into system. The role of doctors is

performed by the tester. It means defect play a major role to

change the system performance. Now-a-days more than 40

research laboratories do research to manage the defect

problem.

Arpita Mittal & Sanjay kumar Dubey [1]

In this research paper authors have studied about the various

types of defect techniques and then undergone through the

survey of COQUALMO cost constructive model which is a

two-step software defect prediction model for improving the

software quality. They have studied three techniques of Defect

handling i.e. Defect Detection Technique, Second Defect

Analysis Technique, and Defect Prediction Technique.

Ghazia Zaineb and Dr. Irfan Anjum Manarvi [2]

Zaineb etal., research presents the actual percentage of bugs

rejection based on data collected from bug tracking system.

Their paper provides a list of reasons behind bug rejection,

their relation with severity level and possible threats that can

affect software testing efficiency with reference to the life of a

rejected bug. The major problem areas causing bug rejections

are bug reports and insufficient knowledge of tester over the

developed software.

Sakthi Kumaresh and Baskaran Ramachandran [3]

The articles provide a general framework of defect with its

defect prevention measures suggested in order to enhance

quality culture establishment in an organization.

Implementation of defect prevention measures in subsequent

projects would result in better performance, rapid and

sustained improvement in the product quality as is evident

from the example.

Ruihua Chang, Xiaodong Mu and Li Zhang [4]

In this paper, authors proposed a novel approach to resolve the

problem of software defect prediction. The method is

classified using Non-Negative Matrix Factorization (NMF).

NMF algorithm is not only used for extracting external

features but also as a powerful way for classification of

software defect data. And the results show that it outperforms

the state of the art techniques tested for this experiment.

Finally, they suggest that it can be a useful and practical way

addition to the framework of software quality prediction.

mailto:prakash.asawat@gmail.com
mailto:klavania@gmail.com

 Volume II, Issue VI, June 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 43

Summary: After studying of these papers, we conclude that

recently research work is done on the defect & all stages of

system problems. Suited models are used to estimate and

prediction of defects, but no single model is sufficient for it.

So, construction of a new model is very important.

Defect Predictors [5]

In software development, every change induces a risk. What

happens if code changes again and again in some period of

time? In an empirical study on Windows Vista, we found that

the features of such change bursts have the highest predictive

power for defect-prone components. With precision and recall

values well above 90%, change bursts significantly improve

upon earlier predictors such as complexity metrics, code

churn, or organizational structure.

Software development can be seen as a sequence of changes—

a constant stream of activities that add new value to software,

adapt it to a changing environment, delete features no longer

required, or improve its structure for better maintenance. All

of these activities are ultimately conducted by humans, and as

humans make mistakes, it is unavoidable that some of these

changes will induce defects.

In this paper, our conjecture is that over the development time

of a system, such multiple attempts would manifest

themselves in consecutive code changes over a period of time.

Such change bursts could be indicators for various problems,

including those traditionally detected by earlier predictors:

 Incomplete or changing requirements. Requirements

may only become stable after multiple

implementation

attempts—for instance, because of conflicting organizations

involved.

 Hairy bugs. Defects may only be tentatively fixed

without knowing the exact cause, making them re-

occur

again and again—that is, the code or task is overly complex.

 Insufficient quality assurance. Quality assurance may

not detect all issues in the first place, thus requiring

constant fixing of newly discovered defects—improving test

coverage over time.

Figure 1. How the Windows development process works.

Changes are first committed in project branches, and then

subsequently merged and integrated into the Windows main

branch.

Comparing characteristics of Firefox and Internet

Explorer regarding defects [6]

Fgure 2: Comparing Characterisitcs of Firefox & IE

Figure 3: Classes of Faults, errors & failures

III. TESTING TECHNQUE & RULES

Phase Detected of defects: Phase Detected indicates the phase

in the software development lifecycle where the defect was

identified.

 Test coverage in unit testing

 Breadth of functional coverage

 Percentage of paths, branches or conditions that were

actually tested

 Volume II, Issue VI, June 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 44

 Percentage by criticality level: perceived level of risk

of paths

 The ratio of the number of detected faults to the

number of predicted faults.

 Unit Testing

 Integration Testing

 System Testing

 Acceptance Testing

System Test Triggers

System test activities deal with system wide and cross-system

issues, including hardware and software environment

implications as well as cyclic and sometimes demanding

workload volumes.

Function Test Triggers

There are several terms used to describe the testing of the

functional aspect of a product. Depending on the size and

scope of the project, any or all could be applied under the

heading of function test. Unit test, for example, is an effort to

validate the ability of the code written to execute successfully,

independently from other influences such as interfaces with

other products or functions. Function test takes a broader

view, ensuring not only that the function executes

successfully, but that interfaces are handled correctly, and that

the function provides expected results. Component test is a

term applicable to a large product which consists of multiple

elements (components). This additional 'function test' ensures

that all of the functions within a component perform

satisfactorily, and the components of a product interface

correctly with each other.

DEFECT TYPES

There are various ways in which we can classify. Below are

some of the classifications:

Severity Wise:

 Major: A defect, which will cause an observable

product failure or departure from requirements.

 Minor: A defect that will not cause a failure in

execution of the product.

 Fatal: A defect that will cause the system to crash or

close abruptly or effect other applications.

Work product wise:

 SSD: A defect from System Study document

 FSD: A defect from Functional Specification

document

 ADS: A defect from Architectural Design Document

 DDS: A defect from Detailed Design document

 Source code: A defect from Source code

 Test Plan/ Test Cases: A defect from Test Plan/ Test

Cases

 User Documentation: A defect from User manuals,

Operating manuals

Type of Errors Wise:

 Comments: Inadequate/ incorrect/ misleading or

missing comments in the source code

 Computational Error: Improper computation of the

formulae / improper business validations in code.

 Data error: Incorrect data population / update in

database

 Database Error: Error in the database

schema/Design

 Missing Design: Design features/approach

missed/not documented in the design document and

hence does not correspond to requirements

 Inadequate or sub optimal Design: Design

features/approach needs additional inputs for it to be

completeDesign features described does not provide

the best approach (optimal approach) towards the

solution required

 In correct Design: Wrong or inaccurate Design

 Ambiguous Design: Design feature/approach is not

clear to the reviewer. Also includes ambiguous use of

words or unclear design features.

 Boundary Conditions Neglected: Boundary

conditions not addressed/incorrect

 Interface Error: Internal or external to application

interfacing error, Incorrect handling of passing

parameters, Incorrect alignment, incorrect/misplaced

fields/objects, un friendly window/screen positions

 Logic Error: Missing or Inadequate or irrelevant or

ambiguous functionality in source code

 Message Error: Inadequate/ incorrect/ misleading or

missing error messages in source code

 Navigation Error: Navigation not coded correctly in

source code

 Performance Error: An error related to

performance/optimality of the code

 Volume II, Issue VI, June 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 45

 Missing Requirements: Implicit/Explicit

requirements are missed/not documented during

requirement phase

 Inadequate Requirements: Requirement needs

additional inputs for to be complete

 Incorrect Requirements: Wrong or inaccurate

requirements

 Ambiguous Requirements: Requirement is not clear

to the reviewer. Also includes ambiguous use of

words – e.g. Like, such as, may be, could be, might

etc.

 Sequencing / Timing Error: Error due to

incorrect/missing consideration to timeouts and

improper/missing sequencing in source code.

 Standards: Standards not followed like improper

exception handling, use of E & D Formats and

project related design/requirements/coding standards

 System Error: Hardware and Operating System

related error, Memory leak

 Test Plan / Cases Error: Inadequate/ incorrect/

ambiguous or duplicate or missing - Test Plan/ Test

Cases & Test Scripts, Incorrect/Incomplete test setup

 Typographical Error: Spelling / Grammar mistake

in documents/source code

 Variable Declaration Error: Improper declaration /

usage of variables, Type mismatch error in source

code

Status Wise:

 Open

 Closed

 Deferred

 Cancelled

DEFECT TRACKING

To track defects, a defect workflow process has been

implemented. Defect work flow training will be conducted for

all test engineers. The steps in the defect work flow process

are as follows:

a) When a defect is generated initially, the status is set

to "New". (Note: How to document the defect, what fields need

to be filled in and so on, also need to be specified.)

b) The Tester selects the type of defects:

 Bug

 Cosmetic

 Enhancement

 Omission

c) The tester then selects the priority of the defect:

 Critical - fatal error

 High - require immediate attention

 Medium - needs to be resolved as soon as possible

but not a showstopper

 Low - cosmetic error

d) A designated person (in some companies, the

software manager; in other companies, a special board)

evaluates the defect and assigns a status and makes

modifications of type of defect and/or priority if applicable).

 The status "Open" is assigned if it is a valid defect.

 The status "Close" is assigned if it is a duplicate

defect or user error. The reason for "closing" the

defect needs to be documented.

 The status "Deferred" is assigned if the defect will be

addressed in a later release.

 The status "Enhancement" is assigned if the defect is

an enhancement requirement.

e) If the status is determined to be "Open", the

software manager (or other designated person) assigns the

defect to the responsible person (developer) and sets the

status to "Assigned".

f) Once the developer is working on the defect, the

status can be set to "Work in Progress".

g) After the defect has been fixed, the developer

documents the fix in the defect tracking tool and sets the

status to .fixed,. if it was fixed, or "Duplicate", if the defect is a

duplication (specifying the duplicated defect). The status can

also be set to "As Designed", if the function executes correctly.

At the same time, the developer reassigns the defect to the

originator.

h) Once a new build is received with the implemented

fix, the test engineer retests the fix and other possible affected

code. If the defect has been corrected with the fix, the test

engineer sets the status to "Close". If the defect has not

been corrected with the fix, the test engineer sets the status to

.Reopen.. Defect correction is the responsibility of system

developers; defect detection is the responsibility of the AMSI

test team. The test leads will manage the testing process, but

the defects will fall under the purview of the configuration

management group. When a software defect is identified

 Volume II, Issue VI, June 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 46

during testing of the application, the tester will notify system

developers by entering the defect into the PVCS Tracker tool

and filling out the applicable information.

The graphical respresentaton of Novel Testing Rules s shown

in last page of paper.

IV. CONCLUSION AND FUTURE SCOPE

Here we have created a descriptive research on defects. We

clarify the basics of testing techniques to control the defects in

different prospective. Through the help of these, we designed

the novel rules for testing. There graphical representation of

this rules is known as the smple paradigm model for stages of

testing [SPST]. Through this model, we can easily improved

the quality of product.

.

ACKNOWLEDGMENT

Authors are thankful to all audience who support dicetly&
indiactrely.

REFERENCES

[1] Arpita Mittal, Sanjay kumar Dubey, ― Defect Handling In Software
Metrics‖, International Journal of Advanced Research in Computer and
Communication Engineering Vol. 1, Issue 3, May 2012.

[2] Ghazia Zaineb and Dr. Irfan Anjum Manarvi, ―IDENTIFICATION
AND ANALYSIS OF CAUSES FOR SOFTWARE BUG REJECTION
WITH THEIR IMPACT OVER TESTING EFFICIENCY‖,
International Journal of Software Engineering & Applications (IJSEA),
Vol.2, No.4, October 2011.

[3] Sakthi Kumaresh and Baskaran Ramachandran,―DEFECT
PREVENTION BASED ON 5 DIMENSIONS OF DEFECT ORIGIN‖,
International Journal of Software Engineering & Applications (IJSEA),
Vol.3, No.4, July 2012.

[4] Ruihua Chang, Xiaodong Mu and Li Zhang, ―Software Defect
Prediction Using Non-Negative Matrix Factorization‖,JOURNAL OF
SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011.

[5] Sannella Change Bursts as Defect Predictors Nachiappan Nagappan_
Andreas Zellery Thomas Zimmermannz Kim Herzigx Brendan Murphy.

[6] Forman, ―Cross-project Defect Prediction: A Large Scale Experiment on
Data vs. Domain vs. Process‖, Thomas Zimmermann, Nachiappan
Nagappan, Harald Gall, Emanuel Giger & Brendan Murphy,
ESEC/FSE’09, August 24–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08...$10.00.

 Volume II, Issue VI, June 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 47

TABLE 1: Difference between system problems

S.

No

System Problem Types

1. Defect Error Bug Fault Failure

2.

M
ism

atch
 b

etw
een

 th
e

req
u

irem
en

ts

A
 d

iscrep
an

cy
 b

etw
een

 a

co
m

p
u

ted
, o

b
serv

ed
, o

r

m
easu

red
 v

alu
e o

r co
n

d
itio

n

an
d

 th
e tru

e, sp
ecified

, o
r

th
eo

retically
 co

rrect v
alu

e

o
r co

n
d

itio
n

.

A
 fau

lt in
 a p

ro
g

ram
 w

h
ich

cau
ses th

e p
ro

g
ram

 to

p
erfo

rm
 in

 an
 u

n
in

ten
d

ed
 o

r

u
n

an
ticip

ated
 m

an
n

er.

A
n

 in
co

rrect step
, p

ro
cess,

o
r d

ata d
efin

itio
n

 in
 a

co
m

p
u

ter p
ro

g
ram

 w
h

ich

cau
ses th

e p
ro

g
ram

 to

p
erfo

rm
 in

 an
 u

n
in

ten
d

ed
 o

r

u
n

an
ticip

ated
 m

an
n

er.

T
h

e in
ab

ility
 o

f a sy
stem

 o
r

co
m

p
o
n

en
t to

 p
erfo

rm
 its req

u
ired

fu
n

ctio
n

s w
ith

in
 sp

ecified

p
erfo

rm
an

ce req
u

irem
en

ts.

TABLE: Defect metrics for a week of operation of a system that runs 24 hours a day

S.
No.

Date Time of Defect Defect Severity Time since last
defect

1. START of Recording, Monday, July 2, 0000 N/A N/A N/A

2. Monday, July 2 0900 1 9 hr

3. Monday, July 2 1600 4 5 hr

4. Tuesday, July 3 0700 1 18 hr

5. Wednesday, July 4 1800 1 33 hr

6. Thursday, July 5 1300 2 17 hr

7. Saturday, July 7 1300 1 8 hr

8. End of Recording, Sunday, July 8, 2400 N/A N/A (8 hr with no defect)

 Total 6 defects 6 failure plus 1
defect

The above metrics were collected over a week of July 2012. There were 6 defects in 5 days, or an average of 0.833 days between

defect, or 16.33 hours between defects. There were 6 failures in 6 days, for an average of 1 days between failure, or 24 hours

between failure.

Initially,

 9 +5 + 18 + 33 + 17 + 8 = 90 hours

Addition of time with the 8 hours with no defect

 90 + 8 = 98 hours

Divided by 6 defects

 = 98 / 6

 = 16.33 hours

Similarly failures can be calculated. We didn’t need to record the exact time each defect or failure is encountered in order to

compute MTTD or MTTF. We just need the total number of defects or failures encountered and the total amount of time the

system was running or tested.

 Volume II, Issue VI, June 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 48

Start

Literature of historical perspective

Selected the nearest and appropriate required

area of testing

Apply problem searching technique

Capture problem

Apply the common methods for solving to the

problem

Capture problem Classify

the category of problem

Fault Failure

Error Defect
TMA TMA

Check one by one mythology which may be

applicable

Result

Result

