Volume ll, Issue VII, July 2013

ULTEMAS

ISSN 2278 - 2540

Novel Testing Rules : The Operation Of Defects

Prakash Kawar Asawat™, Krishan Kant Lavania **, Deepak Dembla™

Arya Institute of Engineering and technology , Jaipur, Rajasthan

#1,2,3

Prakash.asawat@gmail.com * , k@lavania.in * ,deepak_dembla@yahoo.com *

Abstract— Current scenario of research shows that testing is a
valuable area for every project to guarantee its quality and
performance at actual behaviour. Before starting to test a system
we first known literature about the remaining problem in
project, due to this problem the performance and quality of
project may not capture its planned area. So we first search out
few of common error in the project. For that we need to clarify
the concept of defect, error, fault, failure and other relevant to
affect the system performance. In this paper we proposed simple
and valuable stages for testing to capture common error and
increase the performance of system. The paradigm of actual
defect helps to classify the fault type. At last we summarize the
paper and concluded with features scope.

Keywords:- defect, testing, error, fault, principals.

l. INTRODUCTION

Now-a-days, all the output affected by defects & other terms
relate to defects. In medical minor defects in CT scan‘made
the changes in doctors decision a big mistake maysoccurred.
May be patent advised to take a harmful medicine. Similarly.
in system, a defect makes changes in output/performanceof
real time system and they may crash. A dot of money with
human body may affected from this crashed. li“means the
minor defect may create a big problem, & mostly person
affected from it. It means, it’s important to create a framework
for defects, so that peoples can easily-understand them_and
may save the harm. Therefore we create a framewark and
focused to procedure with ML diagram for defects.

Computer system isqaffected by defects. The other terms are
also involved to create the problems in system performance
that is fault, failure, error etc. The actual 'mistake’ in the
program codeé is known as fault &the variation from expected
behaviour observed by the user as a result of the error is call a
failure. Error is the bad state into the system that results from
the fault. The definition of these term are varies according to
situation. The IEEE gave standard definition of these terms as,
Failure- External behaviodr is incorrect. It is the inability of a
system or component to perform required function according
to its specification. Fault- Discrepancy in code that causes a
failure. It is a condition that causes the software to fail to
perform its required function. And Error- Human mistake that
caused fault.

a. Means of Defect Density
Defect density means the percentile amount of conformation
to detect number of defects (with compared to complete/ size

of) into software component or configured item during
predefined time duration of building process.

Figure L#Defect density [2]

Number of Defects

Defect Density = Size
bb = ™M [/ (M + N) [3]
M = number "of bugs detected by the test team
N = number of defects detected by client or end user
Size of Project can be Function points, feature points, use
cases, KLOC et€. In general terms we can say that, Defect
Density, shows the comparative results of number of defects to
the size (actual size) of the Project.

Il. HISTORICAL PERSPECTIVE

Defect is the dieses into system. The role of doctors is
performed by the tester. It means defect play a major role to
change the system performance. Now-a-days more than 40
research laboratories do research to manage the defect
problem.

Arpita Mittal & Sanjay kumar Dubey [1]

In this research paper authors have studied about the various
types of defect techniques and then undergone through the
survey of COQUALMO cost constructive model which is a
two-step software defect prediction model for improving the
software quality. They have studied three techniques of Defect
handling i.e. Defect Detection Technique, Second Defect
Analysis Technique, and Defect Prediction Technique.

Ghazia Zaineb and Dr. Irfan Anjum Manarvi [2]

Zaineb etal., research presents the actual percentage of bugs
rejection based on data collected from bug tracking system.
Their paper provides a list of reasons behind bug rejection,
their relation with severity level and possible threats that can
affect software testing efficiency with reference to the life of a
rejected bug. The major problem areas causing bug rejections
are bug reports and insufficient knowledge of tester over the
developed software.

Sakthi Kumaresh and Baskaran Ramachandran [3]

www.ijltemas.in

Page 77

Volume ll, Issue VII, July 2013

The articles provide a general framework of defect with its
defect prevention measures suggested in order to enhance
quality ~ culture establishment in an organization.
Implementation of defect prevention measures in subsequent
projects would result in better performance, rapid and
sustained improvement in the product quality as is evident
from the example.

Ruihua Chang, Xiaodong Mu and Li Zhang [4]

In this paper, authors proposed a novel approach to resolve the
problem of software defect prediction. The method is
classified using Non-Negative Matrix Factorization (NMF).
NMF algorithm is not only used for extracting external
features but also as a powerful way for classification of
software defect data. And the results show that it outperforms
the state of the art techniques tested for this experiment.
Finally, they suggest that it can be a useful and practical way
addition to the framework of software quality prediction.

Summary: After studying of these papers, we conclude that
recently research work is done on the defect & all stages of
system problems. Suited models are used to estimate and
prediction of defects, but no single model is sufficient for it.
So, construction of a new model is very important.

Defect Predictors [5]

In software development, every change induces a risk. What
happens if code changes again and again in some period of
time? In an empirical study on Windows Vistagwe found that
the features of such change bursts have the highest predictive
power for defect-prone components. Withprecision.and recall
values well above 90%, change bursts Significantly improve
upon earlier predictors such as complexity metrics, code
churn, or organizational structure.

Software development can be seen as a sequence of ehanges—
a constant stream of activities that add new value to software,
adapt it to a changingsnvironment, delete features no longer
required, or improyve its structure for better maintenance. All
of these activities‘are ultimately conducted by humans, and as
humans make/mistakes, it is unavoidablé that some of these
changes will induce defects.
COMPARING PREDICTORS FOR DEFECT-PRONE VISTA COMPONENTS

Predictor Precision Recall
Pre-Release Defects Ti8% 629%
Test Coverage BAE% 544%
Dependencies T44% 69.9%
Code Complexity 719.3% 660%
Code Churn T8.6% T799%
Organizational Structur 86.2% 84.0%
Change Bursts {this paper) Ol.1% 920%

In this paper, our conjecture is that over the development time
of a system, such multiple attempts would manifest

ULTEMAS

ISSN 2278 - 2540

themselves in consecutive code changes over a period of time.
Such change bursts could be indicators for various problems,
including those traditionally detected by earlier predictors:
» Incomplete or changing requirements. Requirements
may only become stable after multiple
implementation

attempts—for instance, because of conflicting organizations
involved.
» Hairy bugs. Defects may only be tentatively fixed
without knowing the exact cause, making them re-
occur

again and again—that is, the‘code or task is overly complex.
» Insufficient quality assurance. Quality assurance may
not detect allfissues in the first place, thus requiring

constant fixing of newly discovered defects—improving test
coverage overtime.

Features o Checkin and
‘ component Test
Project | |

Branch - - e
:W"’ Quality Gate
Multiple 3
Component Branch = /
| \ kI /
Syncing -y
Multiple 1 S
Area Branch < ’/
Check Out ¢ " X
g Time
Files L

Main Branch ﬁ

Figure 1. How the Windows development process works.
Changes are first committed in project branches, and then
subsequently merged and integrated into the Windows main
branch.

Internet

Comparing characteristics of Firefox and

Explorer regarding defects [6]

Domain: Browser
. -
Foabure S
#
Desktopvs. mobile "'

Dev. Tools and IDE Languages C/CPP)

05 and environments Team size

il
Systematicvs. more - i
4 - i " Openvs. closed source
adhoe .
Local vs. distributed
dew,

m—— Firefox Internet Explorer

Figure 2: Comparing Characterisitcs of Firefox & IE

www.ijltemas.in

Page 78

Volume ll, Issue VII, July 2013

Indepandant Digfingt Ssrarata
fauls Brrors failures
Related Similar (ommon-mada
faults Bimors failurag

Figure 3: Classes of Faults, errors & failures

I1l. TESTING TECHNQUE & RULES

Phase Detected of defects: Phase Detected indicates the phase
in the software development lifecycle where the defect was
identified.

» Test coverage in unit testing

e Breadth of functional coverage

e Percentage of paths, branches or conditions that were
actually tested

e Percentage by criticality level: perceived level of risk
of paths

e The ratio of the number of detected faults to.the
number of predicted faults.

e Unit Testing
e Integration Testing
e System Testing

e Acceptance Testing

System Test Triggers

System test activities deahwith system wide and cross-system
issues, including hardware and software environment
implications a5 well as cyclic, and sometimes demanding
workload velumes.

Function Test Triggers

There are several terms used to describe the testing of the
functional aspect of a preduct. Depending on the size and
scope of the project, any or all could be applied under the
heading of function test. Unit test, for example, is an effort to
validate the ability of the code written to execute successfully,
independently from other influences such as interfaces with
other products or functions. Function test takes a broader
view, ensuring not only that the function executes
successfully, but that interfaces are handled correctly, and that
the function provides expected results. Component test is a
term applicable to a large product which consists of multiple
elements (components). This additional ‘function test' ensures
that all of the functions within a component perform

ULTEMAS

ISSN 2278 - 2540

satisfactorily, and the components of a product interface
correctly with each other.

DEFECT TYPES
There are various ways in which we can classify. Below are
some of the classifications:

Severity Wise:
e Major: A defect, which will cause an observable
product failure or departure from requirements.

e Minor: A defect that«will not cause a failure in
execution of the product.

e Fatal: A defect that will cause the system to crash or
close abruptly or effect other applications.

Work product wise:
e SSD: Adefect from System Study document

o FSD: A defect
document

from” Functional Specification

e ADS: A defect from Architectural Design Document
o DDS: A defect from Detailed Design document
o Source code: A defect from Source code

e Test Plan/ Test Cases: A defect from Test Plan/ Test
Cases

e User Documentation: A defect from User manuals,
Operating manuals

Type of Errors Wise:
e Comments: Inadequate/ incorrect/ misleading or
missing comments in the source code

e Computational Error: Improper computation of the
formulae / improper business validations in code.

e Data error: Incorrect data population / update in

database

e Database Error:Error in the database
schema/Design

e Missing Design: Design features/approach

missed/not documented in the design document and
hence does not correspond to requirements

e Inadequate or sub optimal Design: Design
features/approach needs additional inputs for it to be
completeDesign features described does not provide
the best approach (optimal approach) towards the
solution required

www.ijltemas.in

Page 79

Volume ll, Issue VII, July 2013

In correct Design: Wrong or inaccurate Design

Ambiguous Design: Design feature/approach is not
clear to the reviewer. Also includes ambiguous use of
words or unclear design features.

Boundary Conditions Neglected: Boundary
conditions not addressed/incorrect

Interface Error: Internal or external to application
interfacing error, Incorrect handling of passing
parameters, Incorrect alignment, incorrect/misplaced
fields/objects, un friendly window/screen positions

Logic Error: Missing or Inadequate or irrelevant or
ambiguous functionality in source code

Message Error: Inadequate/ incorrect/ misleading or
missing error messages in source code

Navigation Error: Navigation not coded correctly in
source code

Performance Error: An error related to

performance/optimality of the code

Missing Requirements: Implicit/Explicit
requirements are missed/not documented during
requirement phase

Inadequate Requirements: Reguirement_«‘needs
additional inputs for to be compleéte
Incorrect Requirements: Wrong or inaccurate

requirements

Ambiguous Requirements: Requirementsis not clear
to the reviewef. Also includes ambiguous use of
words — e.g¢ Like, such as, may be, could be, might
etc.

Sequencing~ / Timing Efror: Error due to
incorrect/missing_ consideration to timeouts and
improper/missing sequencing in source code.

Standards: Standards not followed like improper
exception handling, use of E & D Formats and
project related design/requirements/coding standards

System Error: Hardware and Operating System
related error, Memory leak

Test Plan / Cases Error: Inadequate/ incorrect/
ambiguous or duplicate or missing - Test Plan/ Test
Cases & Test Scripts, Incorrect/Incomplete test setup

www.ijltemas.in

ULTEMAS

ISSN 2278 - 2540

Typographical Error: Spelling / Grammar mistake
in documents/source code

Variable Declaration Error: Improper declaration /
usage of variables, Type mismatch error in source
code

Status Wise:

Open
Closed
Deferred
Cancelled

SIMPLE PARADIGM MODEL FOR STAGES
OF TESTING

Literature of historical perspective

(i) Search the relevant topic relate to problem

(i) |Idea stored from ontological technique/
approaches

(iii)'Summarized the work and their goal that
may previously have done.

(iv) Improve the knowledge to clear appropriate
type of testing apply to which type of
problem.

Selected the nearest and appropriate required area of
testing

(i) Create the list of common problem in
software with their appropriate testing

technique
(ii) Arrange the problem in an order with testing
technique
Apply problem searching technique
(i) list of common problem

(ii) Search there may be a problem that match with
list of common problem

(iii) If problem is differ from general problem then,
detection technique applied

Capture problem

Classify the category of problem

(i) Classify the class of Problem. They may be
belong to the class of fault, failure, error &
defect etc,

(ii) Further classification of those categories. For
example: a problem may be in defect categories
then classify the defect(in which problem are
matched)

(iii)

Type 1l

Typen

Type 2
Type 3

Page 80

Volume ll, Issue VII, July 2013

Type 1
Typen
Type 2
Type 3
Type 1
Typen
Type 2
Type 3
Type 1
Typen
Type 2
Type 3
APPLICATION

This model is Applicable in the area of examination of
software and hardware. Other most common use of this model
is listed as below:

(i) Design Electronics tools

(ii) Software development life cycle (software testing)

(iii) Examine Mechanical tools

IV. CONCLUSION'AND FUTURE SCOPE
Here we have created a descriptive research on defects. We

clarify the basics of testing techniques to control the defects in
different prospective. Through the help of these, we designed
the novel rules for testing. There graphical representation of
this rules is known as the smple paradigm model for stages of
testing [SPST]. Through this model, we can easily improved
the quality of product.

ULTEMAS

ISSN 2278 - 2540

ACKNOWLEDGMENT

Authors are thankful to all audience who support dicetly&
indiactrely.

REFERENCES

[1] Arpita Mittal, Sanjay kumar Dubey, “ Defect Handling In Software
Metrics”, International Journal of Advanced Research in Computer and
Communication Engineering Vol. 1, Issue 3, May 2012.

[2] Ghazia Zaineb and Dr. Irfan Anjum Manarvi, “IDENTIFICATION
AND ANALYSIS OF CAUSES FOR SOFTWARE BUG REJECTION
WITH THEIR IMPACT OVER TESTING EFFICIENCY”,
International Journal of Software Engineering & Applications (IJSEA),
Vol.2, No.4, October 2011.

[3] Sakthi ~ Kumaresh and« Baskaran Ramachandran,“DEFECT
PREVENTION BASED ON 5 DIMENSIONS OF DEFECT ORIGIN”,
International Journal of Software Engineering & Applications (IJSEA),
Vol.3, No.4, July 2022.

[4] Ruihua Changg Xiaodong Mu and Li Zhang, “Software Defect
Prediction Using Non-Negative Matrix Factorization”, JOURNAL OF
SOFTWARE, VOL. 6, NO. 41, NOVEMBER 2011.

[5] Sannella Change Burstsfas Defect Predictors Nachiappan Nagappan_
Andreas Zellery Thomas Zimmermannz Kim Herzigx Brendan Murphy.

[6] Forman, “Cross-project Defect Prediction: A Large Scale Experiment on
Data vs. Domain vs. Process”, Thomas Zimmermann, Nachiappan
Nagappan, Harald Gall, Emanuel Giger & Brendan Murphy,
ESEC/FSE’09, “August 24-28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08...$10.00.

www.ijltemas.in

Page 81

Volume ll, Issue VII, July 2013 IJLTEMAS ISSN 2278 - 2540

TABLE 1: Difference between system problems
S. System Problem Types

2 g o o

":-"mg @ > @ o > =}

r< m3m8> c o= |lc 308 o> =)
= c2 28 go Soo® 50838 = Z =5 3

7] o = 33 S ST CcC = |2 CT a2 ® S o
3 ©CSIT A S 3 0 ~ S 3 o (=) S35 @
= o= =9 = D — | = oS Do o O -
D —10.—|.D'|—r¢'D = =0 3 _'_'U’CDE;-‘ _‘:...('D:,

= g S =c 5o S S o @ 3 8|=
c S o=58 29 S o2 S 25 80 D 23 = 9
oo 3<2 =953 =228 82235 =>2 3o

5} L300 o< ScT o |2cT S5 2 Q=T

3 o o = o = Q @

2= =SB o2 o 3. 0Q S o =2 =0 @
5 S 338 -2 5 I35@g [35e8 357 > =S

= So 5 3 = 5 =539 o 59
73 @ .o—homg L D3 DD S o 53 o
=/ 2SS9 s 323 33235 =23 S w3
= Sea- o 3222 (32=25>38 IT <
=3 L= 5 T2 IS 2 =0 ® D =&
@ o =8 -Q_Oa..Q_Oo 02 30 @z
® =3 o o Q o > @ 2S5 2

- - = @ 9
0_2/10.:91

=

@D

o

TABLE: Defect metrics for a week of operation of a system that runs 24thours a day

I START of Recording, Monday, July 2, 0000 N/A N/A N/A
Monday, July 2 0900 1 9 hr

Monday, July 2 1600 4 5 hr

Tuesday, July 3 0700 1 18 hr

Wednesday, July 4 1800 1 33 hr

Thursday, July 5 1300 2 17 hr

Saturday, July 7 1300 1 8 hr

End of Recording, Sunday, July 8, 2400 N/A N/A (8 hr with no defect)

6 defects 6 failure plus 1
defect

The above metrics were collected,over asveek of July 2012. There were 6 defects in 5 days, or an average of 0.833 days between
defect, or 16.33 hours between defects. There were 6 failures in 6 days, for an average of 1 days between failure, or 24 hours
between failure.
Initially,

9+5+18+33+ 17 +8=90hours

Addition of time with the 8 hours with no defect
90 + 8 = 98 hours
Divided by 6 defects
=98/6
= 16.33 hours

Similarly failures can be calculated. We didn’t need to record the exact time each defect or failure is encountered in order to
compute MTTD or MTTF. We just need the total number of defects or failures encountered and the total amount of time the
system was running or tested.

www.ijltemas.in Page 82

Volume ll, Issue VII, July 2013 IJLTEMAS ISSN 2278 - 2540

Start

\ 4

Literature of historical perspective

Selected the nearest and appropriate required
area of testing

Apply problem searching technique

VAL

Capture problem
ll

Capture problem Classify
the category of problem

#

www.ijltemas.in Page 83

