
Volume II, Issue VIII, August 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 53

CALIPSO FOR

EARLY ADOPTERS

Something new for

developers to test

 (1)Dr. Gaurav Kumar Jain

Associate Professor,

Department of

Computer Science & Information

Technology, Regional College For

Education Research and Technology,

Jaipur, Rajasthan
gaurav.rinkujain.jain@gmail.com

 (2) Mr. Ravi Ranjan

Regional College For Education

Research and Technology, Jaipur,

Rajasthan

 (3) Mr. Chetan Kumar Saini

Regional College For Education

Research and Technology, Jaipur,

Rajasthan

(4)Mr. Mahendra Kumar Sharma

Regional College For Education

Research and Technology, Jaipur,

Rajasthan

ABSTRACT

In this rapidly growing environment of

Information Technology, those developers who

can rapidly adopt new technology are required

the most. Calipso is a content management

system (CMS), based on the NodeJS server and

MongoDB to perform incredibly fast and

flexible operations. Calipso is a latest project,

which is still under development. It has a total

new idea than other CMS and hence developed

a CMS that didn't suffer from any of the issues

that attempting to shoehorn content into a

relational database leads to.

KEYWORDS

Content Management System, Node.JS,

MongoDB, Relational Database.

1. INTRODUCTION

Content Management System (CMS) is a

computer program that allows publishing,

editing and modifying content on a web site

as well as maintenance from a central

interface. Such systems of content

management provide procedures to manage

workflow in a collaborative environment.

These procedures can be manual steps or an

automated cascade.

Calipso is a content management system

(CMS), based on the NodeJS server. Due to

the asynchronous nature of NodeJS, it

seemed like a good idea to try to build a

CMS made up of modules that could

execute asynchronously in a non-blocking

way.

The original vision of Calipso was to use

NodeJS and MongoDB to create an

incredibly fast and flexible CMS that didn't

suffer from any of the issues that attempting

to shoehorn content into a relational

database leads to.

The initial core writing of the project

Calipso began in the end of april 2011.

Calipso uses a modular approach to

delivering the functions you would expect

from a CMS. All core features, excluding

bootstrapping, theming and forms are

provided by modules (and these may well

be factored out into modules at some point

in the future).

2. MODULES

A module is best though of as a miniature

MVC express application that can define its

own mongoose (mongodb) models, define

the routes it will respond to and match them

up to its own controller functions, and then

define and render content fragments

(unstyled) into blocks in the response.

Themes can then take these blocks and

assemble them into a working site.

mailto:gaurav.rinkujain.jain@gmail.com

Volume II, Issue VIII, August 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 54

Modules are placed inside the 'modules'

folder on your server, in one of three

folders:

 Core : reserved for core Calipso

modules

 Community : for downloaded

contrib / community modules

 Site : for any custom modules for

your own site (this can be called

anything site is just an example)

The module structure itself is then also

quite straight forward and adheres to the

following structure inside a module folder:

 community/template/package.jso

n : Standard CommonJS

Package.json (include all local

dependencies).

 community/template/template.js :

the module file itself.

 community/template/templates :

any templates for rendering output

 community/template/templates/te

mplate.html : an EJS template

 community/template/templates/te

mplate.jade : a Jade template

You can add additional files to include, as

well as static folders that allow modules to

include additional files (see the richforms

example) - apart from the convention above

you are free to structure your module

however you wish, for example, factoring

out a complex model definition out of the

module.js and into a model.js (that is then

required) is absolutely fine and a good thing

in a complex module.

3. IDEAS AND CORE PRINCIPLES

3.1 Core

 The core would do very little, it

would provide enough to get a

basic server running.

 Everything that can and should be

asynchronous must be

asynchronous.

 The core will focus on providing

the basic framework within which

modules (e.g. essentially mini

MVC applications) can be run and

themed.

 It should be multi-lingual from core

outwards.

 Environment configuration will be

abstracted out to enable use on

large and complex projects.

 A Command Line configuration

tool will be created to enable

integration with Continuous

Integration platforms.

3.2 Storage

 MongoDB will be used as much as

possible, the initial versions

therefore will not be storage

agnostic.

 Apart from configuration,

everything should go into

MongoDB by default (including

sessions - to enable correct

operation in a clustered

configuration).

3.3 Modules

 Modules can respond to a request,

but they will do so in parallel and

fully asynchronously.

 Where there are dependencies,

these are described within the

dependent module (e.g. the Content

module contains the fact that it

depends on the Content Types

module), and managed via events.

 Modules will install, initialise and

register themselves.

 Modules expose their own

functions and helpers to views.

3.4 Themes

Volume II, Issue VIII, August 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 55

 Themes can be switched at run

time.

 At all times the modules expose UI

elements (e.g. structure), this

structure can be later modified

within the theming layer.

4.TRANSLATION LIBRARIES

Calipso now has the bare bones of a

translation library, that enables a simple

(Drupal like) translation function to enable

translation of static content into other

languages.

The library works by exposing a function:

t('Hello World') in views, and via the

request object: req.t('Hello World') within

module code. It will look up this english

string in a language file, where the

language to translate to is determined in the

following priority order:

1. The language setting passed in the

URL

2. The users language setting if they

are logged in

3. The language setting specified in

the configuration

There are only one or two translations done

at the moment to Spanish (es), Russian (ru)

and Japanese (ja) (via the link above as an

example), and all are done via Google

Translate as I don't speak anything but

basic Spanish! So apologies if Google

offends anyone.

If you create an account and specify the

language, you can see that it will change

most of the 'static' text (the admin screens

that you can't yet see on this site but you

can if you download Calipso) are also

translated).

The ability for content to also be created in

a specific language will be added as a core

feature (hopefully sometime soon!)

5. INSTALLATION

5.1 Pre-Requisites

First things first, you need to get your

basic environment right, the pre-

requisites are:

 NodeJS

 NPM

 MongoDB

 Libraries: libexpat1-dev and

libbsd-dev (need to confirm).

Without these you will

struggle to install node-expat

and bcrypt.

 A git client (to access the

source code on Github).

Ok - good to go?

5.2 Grab the source...

Go to where you want to run calipso from

(e.g. /var/www).

$ git clone

git://github.com/cliftonc/calips

o.git

Initialized empty Git repository

in /var/www/tmp/calipso/.git/

remote: Counting objects: 724,

done.

remote: Compressing objects:

100% (440/440), done.

remote: Total 724 (delta 298),

reused 520 (delta 216)

Receiving objects: 100%

(724/724), 640.07 KiB | 476

KiB/s, done.

Resolving deltas: 100%

(298/298), done.

$ cd calipso/

$ ls

Volume II, Issue VIII, August 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 56

app-cluster.js conf lib

 media package.json

 README test utils

app.js docs.html

 Makefile modules pids

 support themes

5.3 Ok, now grab all the
dependencies via NPM

Calipso depends on a number of other

libraries that are available through NPM

(the Node Package Manager). If all of

these dependencies aren't installed, you

will get lots of errors when attempting to

run Calipso

$ npm install

npm info it worked if it ends

with ok

npm info using npm@0.3.15

npm info using node@v0.4.2

npm info link

/var/www/tmp/calipso

...

<>

...

npm ok

5.4 Make sure MongoDB is
running...

On Ubuntu, if you have installed

mongodb (sudo apt-get install mongodb),

you can make sure it is running by:

$ status mongodb

mongodb start/running, process

2588

If mongo is not running and won't start

(sudo start mongodb), some times if it

doesn't shut down gracefully you can get

a lock left open, and you need to delete

the lock file (sudo rm

/var/lib/mongod/mongodb.lock) before

starting it.

5.5 Ok - lets run it!

Now the first test, try to run it!

$ node app

 _ _

 ___ __ _| (_)_ __ ___ ___

 / __|/ _` | | | '_ \/ __|/ _ \

| (__| (_| | | | |_) __ \ (_) |

 ___|__,_|_|_| .__/|___/___/

 |_|

Logging enabled: Console

Calipso server listening on

port: 3000

Now, if you browse to:

http://localhost:3000/" \t "_new

You should see the home screen, along

with a message that the site has been

configured with a default Administrative

user and password. You should login with

this, and then change it immediately (you

can do this from the Admin users profile

page).

5.6 What next?

Ok - you're now up and running, you

should be able to login, and once logged

in begin to navigate the content creation

and administration screens.

5.7 Update: Install Script

There is now an install script that you can

try, simply run:

Volume II, Issue VIII, August 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 57

$./bin/install.sh

This should install the dependencies via

NPM, and do a few quick checks to see if

you are up and running.

6. CONCLUSION

Calipso is a really advance Content

Management System (CMS), which uses

one of the most powerful scripting language

‘Node.JS’. Due to the asynchronous nature

of NodeJS, it seemed like a good idea to try

to build a CMS made up of modules that

could execute asynchronously in a non-

blocking way.

Calipso’s full source code is available on

https://github.com/cliftonc/calipso

 This is the start of its journey, Calipso is in

the early days, so any developer, co-

contributor, or feedback is always

welcome!

ACKNOWLEDGEMENTS

We would like to thank everyone,

especially developers, early adopters, I.T.

enthusiast and family members who

provided support and followed up with us.

REFERENCES

[1.] http://calip.so/

[2.] http://calip.so/section/blog

[3.] http://calip.so/section/github

[4.] http://calip.so/section/guide

[5.] http://calip.so/section/quickstart

[6.] http://calip.so/an-introduction-to-

calipso.html

[7.] https://github.com/cliftonc/calipso/wiki

/Guide-Index

[8.] http://calip.so/coding-standards.html

[9.] http://calip.so/coding-standards.html

[10.] http://calip.so/benchmarking.html

