
 Volume II, Issue IX, September 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 79

 Design of a Crawler against Crawling Attacks

(DCACA)
Saurabh Vardani

1
, Vijay Maheshwari

2

Department of Computer Engineering

Shobhit University, Meerut-250110(INDIA)
1
saurabhvardani@gmail.com

Department of Computer Engineering

Shobhit University, Meerut-250110(INDIA)
2
maheshwarivijay@rediffmail.com

Abstract—
Web crawling is the process used by search engines to collect

pages from the web. Fraudulent and malicious web sites pose a

significant threat to desktop security, integrity, and privacy. This

paper examines the threat from different perspectives. We

harvested URLs linking to web sites from different sources and

conducted a study to examine these URLs in-depth. For each

URL, we extract its domain name, determine its frequency, IP

address and geographic location, and check if the web site is

accessible. Our study shows that users can encounter URLs

pointing to fraudulent and malicious web sites not only in spam

and phishing messages but in top search results returned by

search engines. To provide better countermeasures against these

threats, we present DCACA.

This paper describes WebCrawler, attacks on web crawler and

how to prevent web crawl from attacks. WebCrawler has played

a fundamental role in making the Web easier to use for

millions of people. Its invention and subsequent evolution,

from 1994 to 1997, helped fuel the Web’s growth by creating

a new way of navigating hypertext: searching. Before search

engines, a user who wished to locate information on the Web

either had to know the precise address of the documents he sought

or had to navigate patiently from link to link in hopes of finding

his destination. As the Web grew to encompass millions of sites,

with many different purposes, such navigation became

impractical and arguably impossible. Web Crawler as a Web

service to assist users in their Web navigation by automating the

task of link traversal and creating a searchable index of the Web.

Conceptually, WebCrawler is a node in the Web graph that

contains links to many sites on the Web, shortening the path

between searchers and their destinations.

.

Keywords— DCACA, WWW, HTTP, URL, SSL

I. INTRODUCTION

WebCrawler is a Web service that assists users in their Web

navigation by automating the task of Link traversal, creating a

searchable index of the web, and fulfilling searchers’ queries

from the index. Conceptually, WebCrawler is a node in the

Web graph that contains links to many sites on the net,

shortening the path between users and their destinations. Such

a simplification of the Web experience is important for several

reasons: First, WebCrawler saves users time when they search

instead of trying to guess at a path of links from page to

page.[1] For example, he may be viewing a page on one topic

and desire a page on a completely different topic, one that is

not linked from his current location. In such cases, by

jumping to WebCrawler either using its address or a button on

the browser the searcher can easily locate his destination

page[1][2].

II. PROBLEM ASSOCIATE DURING CRAWLING

Web Crawler visits at URLs, it identifies all the hyperlinks in

the page and adds them to the list of URLs to visit and called

the crawl frontier but these hyperlinks and URLs have bad

links. Once users click a bad link and land on the Malware site,

they’re often promoted with a fake codec installation dialog. If

that doesn’t get them, the site is still loaded will dozens of

other tactics to infect their computer. From fake toolbars,

scare ware, rogue software, and more, the sites have it all. One

site that they came across even tried to install 25 different bits

of Malware. Such sites are leaving people vulnerable to

installations of spam bots, root kits, password Steelers, and an

assortment of Trojan horses, amongst other things[3].

According to a security research firm report, Google, Yahoo,

and Microsoft Live Search are currently under a large-scale

organized attack campaign designed to steer online searchers

towards malicious Malware websites[1][3]. Chances are, if

you do any significant amount of searching, you may even run

across some of these dangerous search results. Hundreds of

legitimate search phrases have already been found to pull up

links near the top of the results listings that lead straight to the

malicious sites. According to survey, we’ve already found 27

different domains, each containing up to 1,499 bad pages.

That’s about 40,000 potential pages, which is a pretty big

number.

III. DESIGN OF A DCACA

Web crawler is console application it doesn't need a rich

interface. In this crawler we crawl some link from internet or

WWW then we send all link to frontier queue through

authentication tool, in this tool we crawl links and then

retrieve page from these links and then after we compare SSL

certificate of these pages with already define SSL certificates

to identified original pages. In this figure 1.1 we figure out all

procedure of DCACA Conclusions.

 Volume II, Issue IX, September 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 80

Figure 1.1: Architecture of DCACA

A crawler identifies the location of a document by its URL.

From the URL, it can search and download the document as

shown in fig 5.1. The crawler maintains a list of unvisited

URLs called the frontier. The list is initialized with seed

URLs which may be provided by user or another program.

Each crawling loop involves picking the next URL to crawl

from the frontier fetching the page corresponding to the URL.

Through HTTP, parsing the retrieved page to extract the

URLS and application specific information, and finally adding

the unvisited URLs to the frontier. Before the URLs are added

to the frontier they may be assigned a score that represents the

estimated benefit of visiting the page corresponding to the

URL[]3[4]. The crawling process may be terminated when a

certain number of age have been crawled. If the crawler is

ready to crawl another page and the frontier is empty, the

situation signals a dead end for the crawler. The crawler has

no new page to fetch and hence it stops.

FRONTIER

The frontier is a list that contains the URLs of unvisited pages.

In graph search terminology the frontier is an open list of

unvisited nodes. Once can expect around 60000 URLs in the

frontier with a crawl of 1000 pages assuming an average of

about 7 links per page. The frontier may be implemented as a

FIFO (first in first out) queue. The URL to crawl next comes

from the head of the new URLs are added to the tail of the

queue.

HISTORY AND PAGE REPOSITORY

The craw history is a time stamped list of Urls that were

fetched by the crawler. In effect, it shows the path of the

crawler through the web starting from the seed pages. A URL

entry is made into the history only after fetching the

corresponding page. This history may be used for post crawl

analysis and evaluations. For example, a value can be

associated with each page on the craw path and identify

significant events [7][9].

 FETCHING

In order to fetching a web page, an HTTP client is needed

which sends an HTTP request for a page and reads the

response. The client needs to have timeouts to make sure that

an unnecessary amount of time is not spent on slow servers or

in reading large pages. The client may be restricted to

download only the first 10-20kb of the page. In fact there is an

access policy for crawler or a robot known as robot exclusion

protocol. This protocol provided a mechanism for web server

administration to communicate their file access policies; more

specifically to identify files that may not be accessed by a

crawler. This is done by keeping a file named robots.txt under

the root directory of the web server [6].

PARSING

Once a page has been fetching, there is a need to parse its

content to extract information that will feed and possibly

guide the future path of the crawler. Parsing may imply simple

hyperlink/URL extraction or it may involve the more complex

process of tidying up the HTML content in order to analyse

the HTML tag tree. Parsing might also involve steps to

convert the extracted URL to a canonical form, remove stop

words from the page’s content and stem the remaining words

[5].

 AUTHENTICATION TOOL OF DCACA

We used authentication tool in crawling process to make

crawler more efficient. With the help of this authentication

tool we identify original URLs or web pages. In authentication

process we retrieve web page from its URLs and then send it

to comparison with its SSL (secure socket layer) certificate

which identify that this page is original or not [10]. Every web

page has unique SSL certificate, according to figure 1.2 we

follow some procedure to retrieve original page.

Figure 1.2 Authentication tool of DCACA

SECURE SOCKET LAYER

 Volume II, Issue IX, September 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 81

The Secure Socket Layer protocol was created by Netscape to

ensure secure transactions between web servers and browsers.

The protocol uses a third party, a Certificate Authority (CA),

to identify one end or both end of the transactions. This is in

short how it works .A browser request a secure page (usually

https://). The web server sends it public key with its certificate.

The browser checks that the certificate was issued by a trusted

party (usually a trusted root CA) that the certificate is still

valid and that the certificate is related to the site contacted.

The browser then uses the public key, to encrypt a random

symmetric encryption key and sends it to the server with the

encrypted URL required as well as other encrypted http data.

The web server decrypts the symmetric encryption key using

its private key and uses the symmetric key to decrypt the URL

and http data .The web server sends back the requested html

document and http data encrypted with the symmetric key.

The browser decrypts the http data and html document using

the symmetric key and displays the information [8] [10].

PRIVATE KEY/PUBLIC KEY

The encryption using a private key/public key pair ensures

that the data can be encrypted by one key but can only be

decrypted by the other key pair. The keys are similar in nature

and can be used alternatively: what one key encrypts, the

other key pair can decrypt. The key pair is based on prime

numbers and their length in terms of bits ensures the difficulty

of being able to decrypt the message without the key pairs.

The trick in a key pair is to keep one key secret (the private

key) and to distribute the other key (the public key) to

everybody. Anybody can send an encrypted message that only

we will be able to decrypt, If we have the other key pair, In

the opposite, we can certify that a message is only coming

from right person, because we have encrypted it with our

private key, and only the associated public key will decrypt it

correctly. Beware, in this case the message is not secured you

have only signed it. Everybody has the public key, remember!

One of the problems left is to know the public key of your

correspondent. Usually you will ask him to send you a non

confidential signed message that will contains his public key

as well as a certificate[10].

 THE CERTIFICATE

How do we know that we are dealing with the right person or

rather the right web site? Well, someone has taken great

length (if they are serious) to ensure that the web site owners

are who they claim to be. This someone, we have to implicitly

trust: you have his/her certificate loaded in your browser (a

root Certificate). A certificate contains information about the

owner of the certificate, like e-mail address, owner's name,

certificate usage, duration of validity, resource location or

Distinguished Name (DN) which includes the Common Name

(CN) (web site address or e-mail address depending of the

usage) and the certificate ID of the person who certifies (signs)

this information. It contains also the public key and finally a

hash to ensure that the certificate has not been tampered with.

As you made the choice to trust the person who signs this

certificate, therefore we also trust this certificate. This is a

certificate trust tree or certificate path. Usually your browser

or application has already loaded the root certificate of well

known Certification Authorities (CA) or root CA Certificates.

The CA maintains a list of all signed certificates as well as a

list of revoked certificates. A certificate is insecure until it is

signed, as only a signed certificate cannot be modified. we can

sign a certificate using itself, it is called a self signed

certificate. All root CA certificates are self signed [9][10].

GETTING THE GOOD LINK FROM AN INTERNET

USING DCACA

The first crucial piece of building a crawler is the mechanism

for going out and fetching the html of the web. Like so much

else, c# has classes for doing this very thing built into the

framework.

Public static void Crawl Site ()

 {

 Console Write Line ("Beginning crawl.");

 Crawl Page (Configuration Manager App Settings

["urls"]);

 String Builder sb = Create Report ();

 Write Report To Disk (sb. To String ());

 Open Report in IE ();

 Console Write Line ("Finished crawl.");

 }

Private static void Crawl Page (string url)

 {

 if (Page Has Been Crawled (url))

 {

 String html Text = Get Web Text (url);

 Page page = new Page ();

 Page Text = html Text;

 Page Url = url;

 Page Calculate View state Size ();

 pages Add (page);

if (string link in link Parser is original Urls)

 {

 String formatted Link = link;

 Link = good urls;

 {

Formatted Link = Fix Path (url, formatted Link);

if (formatted Link != String Empty)

 {

 Crawl Page (formatted Link);

 }

 }

 catch (Exception exc)

 Volume II, Issue IX, September 2013 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 82

 {

failed Urls Add (formatted Link + " (on page at url " + url + ")

- " + exc Message);

 }

 }

 }

The Http Web Request class can be used to request any page

from the internet. The response (retrieved through a call to

Get Response ()) holds the data you want.

IV. CONCLUSION

A web crawler is a program that someone uses to view a page,

extract all the links and various pieces of data for the page,

which then hits all the links referenced on that page, getting

all the data for those, and so on. This is how search engines,

for example, get all their data. They write crawlers.

And that is exactly what we needed; something to crawl site to

make sure all links are good. So we decided to write one, and

we are sharing it i.e. DCACA. Between here and there is a

discussion of some of the more interesting bits of features and

code in the crawler.

V. REFERENCES

[1] Junghoo Cho and Hector Garcia-Molina. The evolution of

the web and implications for an incremental crawler. In Amr

El Abbadi, Michael L. Brodie, Sharma Chakravarthy,

Umeshwar Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-

Young Whang, editors, VLDB 2000, Proceedings of 26th

International Conference on Very Large Data Bases,

September 10-14, 2000, Cairo, Egypt, pages 200–209.

Morgan Kaufmann, 2000, (Cooley, Mobasher, & Srivastava

1997; Srivastava et al. 2000).

[2] Chiasen Chung and Charles L. A. Clarke. Topic-oriented

collaborative crawling. In11th ACM Conference on

Information and Knowledge Management, McLean, Virginia,

November 2002, (Mobasher 2005; 2007).

[3] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. In Proceedings of the 7th

World-Wide Web Conference (WWW7), 1998. Online at

http://decweb.ethz.ch/WWW7/1921/com1921.htm,

(O’Mahony et al. 2004; Lam & Riedl 2004; Burke, Mobasher,

& Bhaumik 2005; Mobasher et al. 2005)

 [4] S Chakrabarti, M M Joshi, and V B Tawde. Enhanced

topic distillation using text, markup tags, and hyperlinks. In

SIGIR, 2001, (Burke et al. 2005)

[5] Jon M. Kleinberg. Authoritative sources in a hyperlinked

environment. JACM, 46(5):604–632, 1999.

[6] Junghoo Cho. Crawling the Web: Discovery and

Maintenance of a Large-Scale Web Data. PhD thesis, Stanford

University, 2001.

[7] Andrew McCallum.Bow: A toolkit for statistical language

modeling, text retrieval, classification and clustering. Software

available from http://www.cs.cmu. edu/~mccallum/bow/,

1998.

[8] Soumen Chakrabarti, Martin van den Berg, and Byron

Dom. Focused crawling: a new approach to topic-specific

Web resource discovery. Computer Networks (Amsterdam,

Netherlands: 1999), 31(11–16):1623–1640, 1999.

[9] Filippo Menczer. Links tell us about lexical and semantic

Web content. Technical Report Computer Science Abstract

CS.IR/0108004, arXiv.org, August 2001. Online at

http://arxiv.org/abs/cs.IR/0108004.

[10] S. Chakrabarti, K. Punera, and M. Subramanyam.

Accelerated focused crawling through online relevance

feedback. In WWW, Hawaii. ACM, May 2002.

[11] Michael Hersovici, Michal Jacovi, Yoelle S Maarek, Dan

Pelleg, Menachem Shtalheim, and Sigalit Ur. The Shark-

Search algorithm-an application: Tailored web site mapping.

In 7th World-Wide Web Conference, Brisbane, Australia,

April 1998.

Online at

http://www7.scu.edu.au/programme/fullpapers/1849/com1849

.htm.

http://www.cs.cmu/

