
 Volume III, Issue I, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 42

Query Optimization in OODBMS: Decomposition of

Query and cached for Wider Query Management

ABSTRACT

This paper is based on relatively newer approach for

query optimization in object databases, which uses query

decomposition and cached query results to improve execution

a query. Issues that are focused here is fast retrieval and high

reuse of cached queries, Decompose Query into Sub query,

Decomposition of complex queries into smaller for fast

retrieval of result.

Here we try to address another open area of query

caching like handling wider queries. By using some parts of

cached results helpful for answering other queries (wider

Queries) and combining many cached queries while producing

the result.

Multiple experiments were performed to prove the

productivity of this newer way of optimizing a query. The

limitation of this technique is that it’s useful especially in

scenarios where data manipulation rate is very low as

compared to data retrieval rate.

Keywords— Query Caching, Query Decomposition, Query

Optimization, Stack Based Approach (SBA), Stack-Based

Query Language (SBQL), Object Databases, Query

Performance, Query Evaluation.

1. INTRODUCTION

In various types of Database Systems (Relational as well as

Object-Oriented), many techniques for query optimization are

available [1]. Few of them are Pipelining, Parallel Execution,

Partitioning, Indexes, Materialized Views, and Hints etc [2][4].

One technique which has not been convincingly

implemented is Query Caching [3][20].

Query Caching will provide optimum performance. Instead

of spending time re-evaluating the query, the database can

directly fetch the results from already stored cache. The most

obvious benefit of Query Caching can be seen in systems

where Data Retrieval rate is very high when compared to Data

Manipulation. Hence database i.e. data store get modified after

the long periodic intervals. During these intervals if a particular

Query is calculated only once i.e. for the first time and 999

times the stored result is reused [3][4]. Data Manipulation can

invalidate the cache results because the inserted /modified

/deleted data can bring the difference between the cached

results and the actual results. Hence regeneration of the cached

results will be required to restore the results back again to the

useful state [5][19].

Oracle 11g database system offers this mechanism for SQL

and PLSQL. Mysql database also implemented query chaining

where only full selected query texts together with the

corresponding result stored in cache. LINQ, Microsoft .NET

environment also have this kind of facility [4].

Our research is focused on how cached queries transparent

mechanism can be used in query optimization, assuming no

changes to syntax, semantics and pragmatics of query

language itself [6]. But there is not any result caching solution

implemented in current commercial and non –commercial

object oriented database system [7]. The most important

concept of this work, Query caching have been implemented

by constructing a prototype [8][9] . Most of Commercial

object databases used OQL as query language proposed as

model language by ODMG [2][10][11].

The experimentation for optimization of query will be done

based on queries written in Stack based query language

(SBQL) syntax which is designed and implemented using a

stack-based architecture (SBA) framework [12][13].The

performance gains will be measured by comparing the results

against the performance of the identical queries written and

executed in Prototype with cached and without cached queries.

This paper organized as section 1 Introduction of concept.

section 2 System Design and Architecture, shortly describes

description of optimization strategies-Query caching and

further reuse the result in cached by earlier execution which is

semantically mapped(Decomposition , Normalization) section

3 shows experimental findings and section 4 Discuss

Experimental Result of cached semantically mapped queries

and concludes.

Ms. S.S. Dhande

Asso. Prof

Computer Science & Engineering

Sipna’s College of Engg & Tech,

Amravati, Maharashtra,

India.

sheetaldhandedandge@gmail.com

Dr. G. R. Bamnote

Prof & HOD

Computer Science &Engineering

Prof. Ram Meghe. Institute of Research , Badnera

Amravati, Maharashtra,

India.
grbamnote@rediffmail.com

 Volume III, Issue I, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 43

2. SYSTEM DESIGN ARCHITECTURE

Figure 1. Designed Prototype Query Optimization Steps

2.1 Query Optimization Module

The scenario of the optimization using cached queries in query

evaluation environment for SBA is as follows.[14]

1) A user submits a query to a client-side user interface.

2) The user interface system passes it to the parser. The parser

receives it and transforms into a syntactic tree

3) The query syntax tree is then received by static evaluator

and type checker. It checks whether the query is syntactically

correct or not. If not, it will report the errors. It also validates

the table names, column names, operators, procedure names,

function parameters involved query. Hence it will check the

query’s semantics. For this purpose, it will use the Metabase

present on the server side. Metabase is a part of the database

system which contains the Meta information related with the

data in the various objects. This is static evaluation of the

various nodes in the query syntax tree [14].

4) This type checked and statically evaluated query tree is then

sent to the query normaliser which reconstructs the query

according to the rules of normalization. This normalised query

is then send to the query optimizer. All these components

query parser, query type checker; query normaliser, query

optimizer and query interpreter are employed on the client side

database system.

5) The query optimizer rewrites the received normalized query

using particular strategies like query decomposition. Each

decomposed part of the complex query is send to the server

[15]. Server checks whether the received sub query is already

cached or not. If sub query is present in cache, the Unique

Identification number of the entry in cache which corresponds

to the result of the given sub query is dispatched to the query

optimizer. Optimizer replaces (rewrites) the sub query tree of

the total query tree by a node containing that unique

identification number [16]. This UIN will be used by query

interpreter to directly fetch the result from the server. Hence

all the parts of the query whose results are already stored in

cache will get replaced by their respective UIN. Due to this all

sub queries which get replaced by corresponding UIN, their

results will be brought from the cache & hence their re-

evaluation will be avoided. This rewriting will generate the

best evaluation plan which promises to give the best

performance & having a least cost in terms of time and

storage.

6) The optimized query evaluation plan is then sent to query

interpreter.

7) The plan is executed by the query interpreter [16].

2.2 Query Caching

Once the optimised evaluation plan is executed

successfully, the query is cached on the server side in pair

<query, result>. Following that the calculated result of the

query is send to the client user who has submitted the query.

When the semantically equivalent query (written in

the same or different way) is submitted by the same or other

user, after parsing, type checking and normalization of the

query, optimizer sends the query to the server side query cache

manager. Query cache manager searches for the query in the

query cache registry and if found there will return the unique

identification number (UIN) of the corresponding result to the

client, thus avoiding the recalculation of previously stored

result. Using this UIN, query interpreter (on the client system)

can fetch the stored result of the query directly from the

server. If the query is not found in query cache registry, query

cache manager will send a message to an optimizer (on the

client side database system) indicating that a query is not

cached and hence its result needs to be calculated. Optimizer

then does not rewrite the query i.e. does not reconstruct a

parse tree. That part of the query will be then calculated by the

query interpreter at runtime using runtime ENVS

(Environmental Stack) and runtime QRES (Result Stack)[14]

[17].

Description of few components on server side:

Query Cache Manager – This is a program running in the

server, its job is to check the Query Cache Registry and figure

out if the query is cached. The Query Optimizer with pass

normalized query (or normalised inner sub-query) to the

Query Cache Manager.

Query

Evaluat

or

Query

Parser

Query
Normalizer

and

Optimizer

Syntax Tree

Interprete

r

ENV
S

ERE
S

Query Cache Manager

Meta base, Query Cache Registry, Object Store

Server

Input Query

Q

ue

ry

Re

su

lt

Client

 Volume III, Issue I, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 44

Query Cache Registry – This contains all the cached queries

along with the results.

2.3 Query Normalization

To prevent from placing in the cache, queries with

different textual forms but the same semantic meaning (&

hence also will generate the same result), several query text

normalization methods will be used. Hence if a query is

already stored in the cached with its result, all semantically

equivalent queries will make reuse of the stored result, as all

those queries will be mapped with the already stored query

(due to normalization) [9].

Examples of few techniques useful in the process of

normalization are:

 a) Alphabetical ordering of operands

 b) Unification of Auxiliary Names

 c) Ordering based on column names (in the order in

 which they appear in the table description).

 d) Column names should be maintained to the left side of

 each operator [4].

Algorithm for query execution:

Step 1: Receive the query.

Step 2: Divide the query into set of tokens

Step 3: Construct the parse tree from the set of tokens

Step 4: Normalize the parse tree by applying normalization

rules.

Step 5: Traverse the normalized parse tree to get normalized

text query.

Step 6: Send the normalized text query to cache optimizer.

Step 7: Decompose the normalized text query into set of

queries.

Step 8: While the complete result of the query is not known

Do

Send the smallest independent subquery to the query

cache manager.

 If

the result reference is received

Replace the subquery with the reference

 Else

Calculate the result & Cache the query.

 [endif]

Done

Procedure parsetree()

{

1. Find the first "WHERE". This is the root node

2. The tablename before "WHERE" should be the left child

node Also mark the tablename node (MARKED).

3. Find the AND or OR if present in the query if not present

goto step - 4

 3a the condition after the AND or OR should be the right

subtree rooted at operator node.

 3b For each operator node set the value/columnname to its

left as left node & right as right node.

 3c goto step-5

4. The condition after where should be the right child node.

 4.a Look for binary operators and create a node for them.

(>, = etc)

 4 b.The values/columns before and after the binary operator

become the left and right node.

 4 c. If there is a query after the binary operator then do the

steps from 1 again. Till you reach the end.

TABLE I. Get the list of columnnames following the).

TABLE II. Attach the list of columnnames to the

MARKED node.

}

Procedure Normalise ()

{

operatorslist [] = {=,!=,<=,>=,>,<};

read a query

repeat for all the operators in the query

{

// ensures constants lies to the right of operator.

if(columnvalue is to the left of operator)

 swap the left & right side of the operator.

if(operator has on both sides table attributes)

{

 serialize the condition on tablenames in the list of

tables in the database.

}

}

Repeat for each „and‟ || „or‟ in the query

{

//occuranceof returns the occurance number of the operator in

the operators list.

if occuranceof (left-side condition operator) > occuranceof

(right-side condition operator)

swap the left and right side conditions

else if occuranceof (left-side condition operator) ==

occuranceof (right-side condition operator)

{

//occuranceof returns the occurance number of the column in

the table description.

if (occuranceof (left-side condition columnname) >

occuranceof(right-side condition columnname)

 swap the left and right side conditions

}

}

For list of attributes after each „).‟

 Rearrange the list of attributes by

referring/according to table description

For I =0 to numberofauxiliarynames do

 Auxiliary-name[i] = “AUX” + I;

}

 Volume III, Issue I, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 45

Normalized Parse Tree for “employee where salary <

((employee where name = 'krishna_kant').salary)

”
To implement this prototype we have design School

database. Where School, Student, Grade, Result (Grade n

Result are complimentary class) classes created with

associations.

Figure 2: Class Diagram of Student Database.

2.4 Query Decomposition and Rewriting

After normalization phase query is decomposed, if possible,

into one or many simpler candidate sub queries. Query

decomposition is a useful mechanism to speed up evaluating a

greater number of new queries. If we materialize a small

independent sub query instead of a whole complex query, then

the probability of reusing of its results is raised. Because the

same query may occur as a sub query in many other queries,

hence reuse of its stored result will speed up the performance

of all those queries and as a whole of database system.

Following is the implementation of wider query Q ,

decompose into sub query Q1, Q2, Q3. Wider query consider

here which contain many AND, OR operations (wider query

some time may not a complex query but combination of many

sub query). School database created with 1500 students in

total 3 Schools (500 students in each) at the back-end of the

simulator application in a file (by using serialization of

objects) for above School schema and also created the

identical database in DB4o. I have designed some queries

(Query by Example/Native/Soda) in DB4o and designed

equivalent queries inside the Prototype in format similar to

Stack Based Query Language (SBQL). Prototype is using the

caching as the optimization technique for queries (written in

SBQL syntax).

Query Q: Find out Students secure more than 75 % of Marks

in Examination from School “AAA” and studying in “CBSC”

Board

Taking into consideration of above class diagram (Figure 2),

SBQL syntax Query for above Query

Student where Score > ((Student where schoolName= “AAA”

) AND (Student where schoolBoard=“CBSC”) AND

(Student where Score > 75)).StudentName

Decompose query in to three different independent queries

Q1, Q2, Q3. Factoring out Independent Sub queries:

We segregate out an internal independent query: where Q1,

Q2, Q3 are auxiliary name for queries.

Student where Score > ((Student where schoolName= “AAA”

as Q1)

Student where Score > (Student where schoolBoard=“CBSC”

as Q2)

Student where Score > (Student where Score > 75 as Q3)

Now transform whole query to the following form

(Student where Score > Q1 join Q2 join Q3). StudentName

Figure 3: Normalized Parse Tree For Query Q1.

And the normalized query we get from the normalized parse

tree by applying normalization on it. Hence any query which is

semantically equal this further used from cache.

Figure 4: Normalized Parse Tree For Query Q2.

 Volume III, Issue I, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 46

Figure 5: Normalized Parse Tree For Query Q3.

All this Q1, Q2, Q3 normalised query will store in the cache.

Figure 6: Normalised Parse Tree for Query Q.where cached

Subquery Q1, Q2, Q3, are linked.

3. EXPERIMENTAL RESULT

We have the performance of the optimizer by calculating

response times 100 subsequent results using set of queries

retrieving data from database containing over 15000 objects

(we have also created 3 different frames containing the same

application but first frame is connected to data source

containing 1500 students records, second frame is connected

to data source containing 7500 students records and third

frame is connected to data source with 15000 students

records.) Instance of student schema presented in above

section. We have compare data with four optimization

strategies with cache, without cache, with Db40, and in many

cases response time were 100 times faster. Here we try to

show comparative result by sampling of three queries.

Approch Query

One

Query

Two

Query Three

DB4o [no

optimization]

150087 144779 117553

Prototype [no

caching]

375127 391564 345777

Prototype[with

caching]

21000 19845 20221

Note: Numbers indicates time taken to calculate the result

of the query in microseconds

Table 1: Comparison of DB4o Object Database System

Performance and Performance of Prototype Application for

sample 3 complex queries

Queries Data Source

One

Data Source

Two

Data Source

Three

Query One 15093 69635 165250

Query Two 44297 89709 356978

Query Three 23006 96759 125690

Query Four 35897 84760 221977

Table2 : Queries execution time increases with the growing

size of the database

0
100000
200000
300000
400000

Q
u

er
y

O
n

e

Q
u

er
y

Tw
o

Q
u

er
y

Th
re

e

Q
u

er
y

Fo
u

r

Data Source
One

Data Source
Two

Data Source
Three

Figure 8: Time Taken for calculating result of query increases

with increase in size of database.

CONCLUSION

Based on the experimental results we can state that

Decomposition and Caching techniques in Object Oriented

Queries have resulted in approx around hundred percent

increases in performance and query output. Here we try to

address future scope [] of combing many cached query results

for producing result of more complex queries. High

performance of these techniques will make these queries ideal

for scenarios when Data Retrieval ratio is very high when

compared to Data Manipulation. This is due to the fact that the

 Volume III, Issue I, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 47

cached results will not have to update with the latest data at a

frequent interval which in turn will boost the performance of

the database. With more development in these techniques, the

database can be a boon in the areas of Data Warehousing

which work mostly in Data Retrieval mode.

REFERENCES

[1] Yannis E. Ioannidis, “Query Optimization” in International

Journal on Very Large Data Bases VLDB Journal ,Volume

6, Issue No 2, May 1997 Springer- Verlag New York,

USA.

[2] Antonio Albano, Giorgio Ghelli, and Renzo Orsini

“Programming Language of Object Database” in Very

Large Data Bases VLDB Journal, Volume 4, 1995, Pages

403-444.

[3] Hanna Kozankiewicz, Krzysztof Stencel, Kazimierz

Subieta “Distributed Query Optimization in the Stack-

Based Approach” Springer Journal Lecture Notes in

Computer Science, Volume 3726,pages 904-909, Springer-

Verlag Berlin Heidelberg 2005.

[4] Silberchatz ,Korth ,Sudharshan “Database System

Concepts” 4th edition Mc-Graw-Hill, ISBN 0-07-120413-X

chapter 8, Objec Oriented Database pages 307-333, chapter

13& 14 Query processing,Query Optimization,2002.

[5] Steenhagen, Hendrika Janna “Optimization of Object

Query Language” With index, ref. Subject headings:

database systems / query optimization, ISBN 90–9008745–

1 ,1995.

[6] Christian Rich, Marc H. Scholl “Query Optimization in

OODBMS” in Proceeding of The German Database

Conference BTW., Springer, ISBN 3-540-56487-X March

1993.

[7] Minyar Sassi and Amel Grissa-Touzi “Contribution to the

Query Optimization in the Object-Oriented Databases” in

Journal of World Academy of Science, Engineering and

Technology, WASTE Issue No. 11, 2005.

[8] S. S. Dhande,G. R. Bamnote “Query Optimization in

Object oriented Database through detecting independent

sub queries” in International Journal of Advanced

Research in Computer science and software Engineering.

(IJARCSS), ISSN: 2277-128X, VOL-2,ISSUE-2 , FEB

2012.

[9] S. S. Dhande,G. R. Bamnote “Query Optimization of

OODBMS: Semantic Matching of Cached Queries using

Normalization” in International Conference on “Emerging

Research in Computing, Information, Communication and

Applications”ERCICA-2013, Elsevier Publication

DBLP,ISBN:978-93-5107-102-0, Aug 2013.

[10] Rodrigo Machado, Alvaro Freitas Moreira, Renata de

Matos Galante “Type-Checking OQL Queries in the

ODMG Type Systems” Journal of Universal Computer

Science, volume 12, Issue No. 7, Pages 938-957, 2006.

[11] “Next-Generation Object Database Standardization” Date:

27-September-2007 Object Database Technology Working

Group White Paper. in International Multiconference

Computer Science and Information Technology, IMCSIT

09. ISBN: 978-1-4244-5314-6, 2009.

[12] K. Subieta, C. Beeri, F. Matthes, and J. W. Schmidt, “A

Stack Based Approach to query languages,” in Proc. of 2nd

Springer Workshops in Computing, 1995.

[14] K. Subieta, “Stack-Based Approach (SBA) and Stack-

Based Query Language (SBQL),”

http://www.sbql.pl/overview/, 2008.
[15] Bleja, M. Stencel, K. Subieta, K.,Fac. “Optimization of

Object-Oriented Queries Addressing Large and Small

Collections”

[16] Piotr Cybula and Kazimierz Subieta “Query Optimization

Through Cached Queries for Object-Oriented Query

Language SBQL” Springer Journal Lecture Notes in

Computer Science, volume 5901/2010, pp.308-320, 2010.

[17] Piotr Cybula, Kazimierz Subieta “Decomposition of SBQL

Queries for Optimal Result Caching” Proceedings of the

Federated Conference on Computer Science and

Information Systems pp. 841–848

[18] M. Tamer, Jose A. Blakeley “Query Processing in Object

Oriented Database System” in Proceeding of ACM

SIGSOFT Software Engineering Notes ,volume 35 , Issue

No. 6, ISBN:0-201-59098-0, November 2010.

[19] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham,

“Materialized view selection and maintenance using multi-

query optimization,” in Proc. of ACM SIGMOD, pp. 307–

318, 2001.
[20] Belal Zaqaibeh and Essam Al Daoud, “The Constraints of

Object-Oriented Databases” International Journal of

Open Problems in Computer Science and Mathematics,

IJOPCM, Volume 1, No. 1, June 2008

