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Abstract—this paper describes an efficient, small-vocabulary, grammar oriented speech recognition system using HMM (Hidden 

Markov Models) for mobile applications. The paper presents the issues and techniques forimproving strength and efficiency of the 

front-end, reducing computation through silence recognition, applying the Bayesian information criterion to build minor and 

superior acoustic models, minimizing finite state grammars, use of hybrid maximum likelihood and discriminative models, and 

generating baseforms from new spoken word. 
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I. INTRODUCTION 

 

The explosion and extensive use of mobile devices in 

everyday life has brought a need for efficient and easy to 

use interfaces to mobile devices. Technological advances 

make these mobile devices smaller, cheaper, powerful, and 

energy efficient. Diminishing dimensions have made the 

traditional keyboard/stylus interface of limited use and 

applicability in mobile applications. A conversational 

speech interface, emerging as a powerful and feasible 

alternativein such applications. 

 

The increasing necessity of the conversational interface 

demandsimportant advances in processing power 

andspeech and natural language technologies. Speech 

recognition is significant need for a lowresourcespeech 

recognition system that is vigorous, precise, and effective. 

 

This paper describes techniques for reducing the error 

rate,memory requirement and computational requirements 

of a grammar based, small vocabulary speech 

recognitionsystem which is intended for deployment on a 

portable device. Small vocabulary means about500 

distinctive words or phrases within afinite-state grammar. 

By portable device we means system thatcan be executed 

by a 50 DMIPS processor, with 1 MB or less of DRAM 

and can be powered by a battery with an satisfactory 

lifetime [3]. 

 

High accuracy in hostile acoustic environments is an 

important issue in portable device. Furthermore because 

they are intended for the mass market, they must be low 

cost. Similarly to appealto the consumer, the system must 

be simple and it the user must have the ability to 

easilypersonalize it to his/her needs. 

 

The paper is organized as follows. We initiate with a 

broadoverview of the system organization in Section II. 

SectionIII defines various techniques to provide robustness 

tothe front-end. We then describe theacoustic models in 

Section IV. In specific we address trainingand model size 

in this section. Section V demonstrates techniquesfor 

grammar minimization. We conclude with a summary and 

discussion of the potentialfor low-resource speech 

recognition. 

 

 

II. SYSTEM ORGANIZATION 

 

The system is based onwell-known, phonetically based, 

HiddenMarkov Model approach. It is divided intothree 

primary components namely (1) front end, (2) labeler and 

(3) decoder as shown in Figure. 1. When processing 

speech, thecomputational workload is divided about 

equallyamong these components. The frontend may be 

activemore than the other modules, since it isused as well 

to separate speech from non-speech audio. 

 

Fig.1 Flow chart of the system architecture 
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The front-end computes standard 13 dimensional 

MelFrequencyCepstral Coefficients from 16bit PCM 

sampled. The front-end also performs adaptive mean and 

energy normalization. The labeler computes first and 

second differences of the 13 dimensional cepstral vectors, 

and joins these with the original elements to produce a 39 

dimensional feature vector. 

 

The labeler then computes the log likelihood of each 

feature vector according to observation densities associated 

with the states of the system’s Hidden Markov Model. This 

computation gives a ranked list of the top 100 HMM states. 

Possibilities are inferred based upon the rank of each HMM 

state by a table lookup [2]. The sequence of rank 

possibilities is then forwarded to the decoder. The decoder 

implements a synchronous Viterbi search over its 

vocabulary. 

 

Words are represented as sequences of context-dependent 

phonemes, with each phoneme modelled as a 3 state HMM. 

The observation densities related with each HMM state are 

trained upon one phone of left context and one phone of 

right context only. Each observation density is modelled as 

a mixture of 39-dimensional diagonal Gaussians. 

 

III. FRONT-END PROCESSING 

 

Samples are partitioned into overlapping frames of 25 ms 

duration with a frame shift of 15 ms to reduce the overall 

computational load considerably without disturbing the 

recognition accurateness. Each frame of speech is 

windowed with a Hamming window and represented by a 

13 dimensional MFCC vector. We observed by experience 

that noise sources have significant energy in the low 

frequencies and speech energy is mainly concentrated in 

frequencies above 200 Hz. Discarding the low frequencies 

therefore, improves the robustness of the system to noise. 

 

A. Channel and Energy Normalization 

 

To decrease the effects of channel and high changeability 

in the signal levels, the front-end performs adaptive mean 

exclusion and adaptive energy normalization, respectively. 

Cepstral mean removal betters channel changeability and 

consists of deducting from each incoming frame tC , the 

presentapproximation of the mean value of the cepstra tC , 

for the present utterance 

 

ttt CCC 
~

  (1) 

 

The cepstral mean is initialized with a value estimated off 

line on a representative collection of training data. It is then 

updated on a per-frame basis by interpolating the present 

mean estimate with each incoming frame 

 

ttt CCC )1(1     (2) 

 

The interpolation weights are decided based upon the 

energy level of the frame. 
 

Energy normalization consists of deducting from the 

zero
th

dimension of each incoming frame )0(tC , an 

approximation of themaximum of the zero
th

 cepstral 

coefficient, )0(ˆ
tC  

)0(ˆ)0()0(
~

ttt CCC   (3) 

 

)0(ˆ
tC is larger of the maximum C0value observed up to 

the t
th

frame of the n
th

 utterance and the maximum C0value 

observedduring the (n-1)
 th

 utterance. 

 

B. Speech/Silence Detection 

 

The front-end also separates speech from silence. By using 

simple Gaussian mixturemodels, front end labels each 

cepstral vector as speech/silence, and stores these vectors 

for later processing. It uses amixture of 4 Gaussians to 

model the distribution of silenceframes and speech frames. 

All Gaussianshave diagonal covariance. They are estimated 

on a balancedcollection of quiet and noisy data previously 

labeled withspeech and silence labels. When a sufficiently 

long sequenceof vectors labeled as speech has accumulated 

in the buffer,the front end determined that it is getting 

spoken language fordecoding, and forward the collected 

sequence of vectorsfor decoding. Sequences of vectors that 

are categorizedas silence are rejected without processing by 

the labeler andthe decoder, results in substantial 

computational savings. 

 

C. Unwanted Signal Removal via Multichannel CDCN 

 

Robustness in the existence of noiseand interfering signals, 

is animportant issue for speech recognition to work in a 

real world environment. To deal with a real time 

application constrainedto run with low computational 

resources, an inexpensiveandinaccurate form of adaptive 

filtering, a singletapdelay filter, is used to approximately 

align and scale the referencesignal with the noisy speech. 

The lineupand scaled referencesignal is then discarded 

from the noisy speech in the cepstral domainusing 

algorithm derived from CDCN [5] andcalled Multichannel 

Codebook Dependent CepstralNormalization. MCDCN is 

advantageousas:  

 

 It allows to compensate for the loose modelingof the 

coupling system between the speech and the 

interferingsignal by taking advantage of our 
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knowledge of the clean speechdistribution in the 

cepstral domain,  

 It can be adjusted to meet thedesired balance between 

performance and computational complexity, 

 It performs on a per-frame basis, i.e., at a 

lowcomputationrate compared to waveform 

techniques,  

 It does not include any iterative estimation 

scheme,therefore further enabling a real time use. 

 

IV. ACOUSTIC MODELS 

 

The acoustic model contains context dependent sub-phone 

classes/allophones. The context for a given phone is 

composed of only one phone to its left and one phone to its 

right. A key concern is whether or not the phone context is 

permitted to extend across word boundaries. We have 

examined both approaches and settled on a system that uses 

within word context only since this made the search 

simpler and faster and had little or no effect in recognition 

accuracy for the tasks of interest. Except as noted in 

Section V all results in this paper are for such systems. The 

allophones are identified by growing a decision tree using 

the context-tagged training feature vectors and specifying 

the terminal nodes of the tree as the relevant instances of 

these classes [2]. 

 

Each allophone is modeled by a single state HMM with a 

self-loop and an advancing transition. The training feature 

vectors are decanted down the decision tree and the vectors 

that collect at each leaf are modeled by a Gaussian Mixture 

Model, with diagonal covariance matrices to give a 

preliminary acoustic model. For the baseline, all the 

Gaussian Mixture Model had about equal number mixture 

components. Opening with these initial set of Gaussian 

Mixture Model several iterations of the standard Baum–

Welch EM training procedure is run to obtain the final 

baseline model. 

 

In our system, the output distributions on the state 

transitions are expressed in terms of the rank of the HMM 

state instead of in terms of the feature vector and the 

Gaussian mixture model modeling the leaf. The rank of a 

Hidden Markov Model state is gained by calculating the 

likelihood of the acoustic vector using the Gaussian 

Mixture Model at each state, and then ranking the states on 

the basis of their likelihoods. 

 

V. GRAMMAR MINIMIZATION 

 

A finite state grammar can be represented as a weighted 

finite state automaton (FSA) on words, where all transition 

transmits a word and a language model probability. A word 

results in to a sequence of phones, each of which is 

modeled as a 3 state Hidden Markov Model. The phone 

models are context dependent. Here we only consider 

phones with cross word context hence; the first three states 

of a word model depend on the word that precedes it, as 

illustrated in Fig. 2  

 

Fig.2 Sub graph of a digits grammar.  

 

 
A word identifier is existing at the end of each sequence of 

states that models a word. Though they are not firmly 

necessary, these identifiers permit a fast mapping from the 

finest sequence of states to the recognized words when the 

search is finish. 

 

Through determination and minimization, a weighted 

automaton with a lesser number of states may be created 

[1]. Though, the set of paths through the minimized graph 

is alike to the set of paths through the original one. 

Therefore, the sequence of states that best describes the 

acoustic observations is unaffected. Minimization 

essentially consists of sharing common states between 

paths that diverge or converge at a graph node.  

 

The memory necessities for the storage of the graph and for 

the search are compact in the same amounts. As stated 

above, the recognition accuracy is not affected. Although 

the number of states to be visited throughout the search is 

decreased, the minimized graph is less regular than the 

original one. This has significant and astonishing 

computational penalties. The sharing of states decreases the 

amount of computation, since equal, parallel paths through 

the grammar are merged into a single path. But the merged 

paths must branch out again, as they eventually terminate 

in dissimilar words. 

 

The unexpected result of this reduced symmetry is that a 

typical Reduced Instruction Set Computer (RISC) 

processor’s core hardware, which generally includes a 

deeply pipelined Arithmetic and Logical Unit (ALU), 

cannot function at high efficiency therefore while 

minimization significantly reduces the total number of 

arithmetic operations during decoding; it results in modest 

increase in decoding.  

 

VI. SUMMARY 

 

This paper described techniques to address recognition 

accuracy, robustness, system size, and computational 
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resource issues in phonetically based, small vocabulary 

speech recognition systems. We discuss methods for 

channel and energy normalization, speech silence detection 

and Multichannel Codebook Dependent 

CepstralNormalization.Speech recognition is already being 

investigated as a user interface for handheld computers [3], 

[4]. However technology stays to advance in shrinking size 

and improving performance. The technology tries to make 

those devices smaller, sleeker, lighter, faster and easier to 

use and hence ever more requiring accurate speech 

recognition.  
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