
Volume III, Issue X, October 2014                               IJLTEMAS                                                           ISSN 2278 - 2540 

www.ijltemas.in Page 53 
 

Shortest Path Finding Algorithms for Real Road 

Network 

Agam Mathur
1
, Mayuresh Jakhotia

2
, Anish Lavalekar

3
, Nikita Magar

4
 

1,2,3,4
Computer Department, VIIT, Pune University 

 
 Abstract -Several graph analysis algorithms for shortest 

path can be categorized as single source, single destination, 

or all pairs algorithms [4],[7]. Dijkstra’s algorithm is one 

such which falls in the first category, and can be used to find 

the lowest cost between two nodes when there is a single 

source. However, it doesn’t allow negative weights. It may 

simply fail in those cases to give correct results. But, in our 

system, we need to find the shortest path between on real 

road networks. There are several algorithms for this 

purpose, such as Bellman-Ford, A*, and Floyd-Warshall. In 

Bellman-Ford, the working is similar to Dijkstra’s, i.e. it’s a 

single source shortest path problem [4], but, it can handle 

negative weight edges. In the Floyd-Warshall algorithm, 

every node can be a source, and can be used to calculate the 

shortest distance from a source to a destination node. Unlike 

Dijkstra’s algorithm, Floyd-Warshall, in case of negative 

cycles, will correctly state that there isn’t any minimum 

weight path, owing to the unbounded negative weight. In 

short, Floyd-Warshall is an appropriate algorithm for our 

system which will be used in generating optimal route for all 

node pairings.  
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I.INTRODUCTION 

 

raph theory has become an important means to 

represent and analyze various practical problems. In 

this context, a graph is made up of vertices/nodes, and 

lines called edges that connect the nodes. We are using 

short- est path algorithms in this paper, in order to come 

up with a solution for our system. Basically, the categories 

of any shortest path algorithm can broadly fall into single 

source, single destination, or all-pairs shortest path 

algorithms. The single source algorithm can be used to 

find the shortest path from a source vertex to all the other 

vertices in a graph. The single destination algorithm is 

used to find the shortest path in a directed graph, from all 

vertices to a single destination. It can be also be seen as a 

single source problem by reversing the arcs. The last 

category, all-pairs vertices, finds shortest path between 

every pair of vertices. The single source problems involve 

a single source and can be solved using algorithms such as 

Dijkstra’s, and Bellman-Ford if negative edges are 

involved. A* algorithm is a single pair and uses heuristics 

to speed up the search. All-pair algorithms such as 

Johnson’s algorithm and Floyd-Warshall algorithm are 

used to find shortest paths between all pairs of vertices. 

Johnson’s al- gorithm uses Bellman-Ford and Dijkstra’s 

algorithm, and is not efficient in dense graphs. Floyd-

Warshall, on the other hand, is more useful in the case of 

dense graphs, such as real road networks. Our system is a  

public conveyance system wherein real road networks will 

be used. So our graph would be a dense graph, consisting 

of all the places as nodes, and the paths connecting the 

nodes, as the edges. Here, we are required to find out node 

to node path, and not a path from a single source to all the 

other nodes. Therefore, single source algorithms such as 

Dijkstra’s and Bellman-Ford cannot be used in this case. 

Also, since our graph is not a sparse graph, we would not 

use Johnson’s algorithm. Floyd-Warshall, on the other 

hand, provides the node to node distance as is required for 

our system.  

 

 

II.ALGORITHM ANALYSIS 

 
A.Dijkstra's algorithm:  

 

Dijkstra's algorithm [1],[7]is a single source-single 

destination algorithm used to find the shortest path. By 

single source algorithm, we mean that there is shortest 

path between one source and multiple destinations. Single 

destination means that there is shortest path between 

multiple sources connecting a single destination. This can 

be seen as a single source shortest path algorithm by 

reversing the edges. So, basically, Dijkstra's algorithm is a 

single source shortest path problem, producing a shortest 

path tree for a graph with positive edge path costs.  

 

      In Dijkstra's algorithm, for a given vertex, i.e. node in 

the graph, the algorithm finds path with the lowest cost 

between that and all other vertices. It's also used to find 

cost of shortest path from a single source to a single 

destination by stopping the algorithm once the shortest 

path to the destination vertex has been determined.  

Dijkstra's original algorithm runs in time O |V| , where |V| 

is the total number of vertices. Dijkstra's algorithm is 

asymptotically the fastest known single-source shortest 

path algorithm for arbitrary directed graphs having 

unbounded non-negative weights. Dijkstras algorithm is 

more general, it is not just restricted to acyclic graphs. 

The edges need not be investigated often using this 

algorithm. It means that once it has been carried out, the 

least path to all permanently labeled nodes can be found 

out without the need of a new diagram for each pass. It 

implies that it would turn out faster, if edges are relatively 

expensive to compute. Also, the order of |V|2 indicates that 

it is efficient enough for relatively large problems. 

However, it requires that the weights on the edges must be 

positive and doesn’t support negative edges. Also, 

Dijkstras algorithm considers only the weights between 

the vertices to select the shortest path. But, for situations 

like real road networks, there can be various parameters 

such as the time taken to travel (in case of a bus), the 

congestion on the roads, the monetary cost, etc. This  
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Figure 1: The first two steps of Dijkstras shortest path algorithm, 

displaying its breadth-first search properties 

 

 

 Algorithm doesn’t suffice any such parameters and so, is  

limited in its application from such system(s) point of 

view.  

 
B. Bellman-Ford Algorithm  

 

Bellman-Ford algorithm[5] is a single source algorithm 

used to find the shortest path in a weighted directed graph. 

By single source algorithm, we mean that there is shortest 

path between one source and multiple destina- tions. 

However, unlike Dijkstras, it considers even nega- tive 

edge weights. In this algorithm, if a graph contains a cycle 

with edges summing up to a negative value, then low 

value paths can be created. Bellman-Ford runs in 

O(|V|.|E|), where |V| is the total number of vertices, and | 

E| is the total number of edges.This algorithm simply 

relaxes all the edges until |V|-1 is reached. With the repe- 

titions, the number of vertices having correctly calculated 

distances grows, thereby all vertices will have correct 

distances. This is one of the reasons for the application of 

this algorithm to a wider class of inputs. It also in- creases 

system performance by allowing splitting of traffic across 

several paths, and works well for distributed systems. This 

algorithm does not scale well. Network topology can be 

changed but the changes made aren0t reflected quickly 

due to the spreading of updates from node to node. Also, 

there0 s the count to infinity problem wherein if a node 

failure occurs, and the node is rendered unreachable from 

some other nodes, then those nodes may spend forever 

increasing their estimates to reach the node which has 

failed. 

 

 
 

 
Figure 2: Working of Bellman-ford algorithm 

 

 
C. A* Algorithm  

 

A* algorithm is an extension of Dijkstras algorithm de- 

scribed above. A* algorithm is used in pathfinding and 

efficient graph traversal between nodes. A* algorithm has 

better time complexity than Dijkstras algorithm by us- ing 

a heuristic function because of which it can guide the 

search to the desired solution and hence less time 

complexity.  

A* algorithm uses Breadth-First-Search strategy to find 

the least cost path from a starting node to a final node. A* 

uses the cost function f(n) to sort the alternate path 

segments in a priority queue. Cost function f(n) is a sum 

of two functions g(n) and h(n). g(n) is the actual cost from 

starting node to current node n, while h(n) is the heuristic 

function which is the estimated cost of the cheapest path 

from current node n to final goal node. f(n) = g(n) + h(n)  

 

     A* algorithm accuracy and reduction in time complex- 

ity depends largely on the heuristic function used. For a 

given problem, many heuristic functions are possible and 

they will give different results. For example 8-puzzle 

game problem can be solved using two heuristics. Firstly  

 

 
 

Figure 3: Consistent property of Heuristic Function 
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by ”number of misplaced tiles in board n” and secondly 

by ”sum of distances of misplaced tiles to goal positions 

in board n”. Research shows that A* algorithm which uses 

second heuristic functions performs 10 times better than 

A* algorithm implemented by first heuristic. 

Heuristic function h(n) used in A* algorithm should be 

admissible and consistent for generating optimal results. 

Heuristic function h(n) is admissible if it never overesti- 

mates the cost to reach the final destination node from the 

current node. In other words, heuristic function h(n) 

should be too optimistic, that it estimates the cost to be 

smaller than it actually is.  

Heuristic function h(n) is consistent if for every node n 

and for every successor node nof n satisfies:  

h(n)<= c(n,n) + h(n) 

 

D. Floyd-Warshall Algorithm 

 

The Floyd−Warshall algorithm [2],[4],[5],[7] (also known 

as Floyd’s algorithm, Roy−Warshall algorithm, 

Roy−Floyd algorithm, or the WFI algorithm).This 

algorithm is a graph analysis algorithm, which is used for 

finding transitive closure of a relation R and also for 

finding shortest paths in a weighted graph. Weighted 

graph may be with positive or negative edge weights (but 

with no negative cycles). Single execution of the 

algorithm finds lengths of all the shortest paths between 

each and every pair of vertices present in the graph ,thus it 

does not returns details of the path themselves. To find all 

pair of vertices in a graph Floyd −Warshall algorithm will 

be used. This algorithm is competitive for dense graphs 

and uses adjacency matrices as opposed to adjacency lists. 

Consider an instance for TSP is given by W as, Represent 

the directed, edge-weighted graph in adjacency-matrix 

form. 

W = matrix of weights =  

𝑤11 𝑤12 𝑤13

𝑤21 𝑤22 𝑤23

𝑤31 𝑤32 𝑤33

   

. 

 

 wij is the weight of edge (i, j), or infinity if there is no 

such edge.  

. Return a matrix D, where each entry dij is d(i,j). Could 

also return a predecessor matrix, P, where each entry pij is 

the predecessor of j on the shortest path from i. Consider 

intermediate vertices of a path: 

 

 

 
 

Figure 4: Intermediate vertices of path. 

 

 

Say we know the length of the shortest path from i to j 

whose intermediate vertices are only those with numbers  

1, 2, ..., k-1. Call this length Now to extend this from k-1 

to k we can use 

 

 
 

Figure 5: Alternative Intermediate vertices of path using 
Floyd−Warshall algorithm 

 

Two possibilities: 1. Going through the vertex k does n t 

help− the path through vertices 1...k-1 is still the shortest. 

2. There is a shorter path consisting of two sub paths, one 

from i to k and one from k to j. Each sub path passes only 

through vertices numbered 1 to k-1 Thus, 

 

dij
(k)=min(dij

(k−1),dik
(k−1)+dkj

(k−1))  

Also, dij
(0) =wij 

 (since there are no intermediate vertices.) When k 

= |V|, we're done. Let n be |V|, the number of 

ver-tices. To find all n2 of shortestPath(i,j,k) (for all i 

and j) from those of shortestPath(i,j,k−1) requires 2n2      

op-erations. Since we begin with shortestPath(i,j,0) = 

edge-Cost(i,j) and compute the sequence of n matrices 

shortest-Path(i,j,1), shortestPath(i,j,2),..., 

shortestPath(i,j,n), the total number of operations used 

is n . 2n2 = 2n2 . There-fore, the complexity     of the 

algorithm is θ (n3 ).[5],[6] 

 

 
III. COMPARISON BETWEEN PATH FINDING 

ALGORITHM 

The worst case time complexities of all above algorithms 

are given as follows 

 

Table 1: Comparisons between path finding algorithm 

 

Algorithm 
 

Time complexity 
 

Space complexity 
 Dijkstra 

 
O(|V||E|) 

 
O(|V||E|) 

 Bellman-Ford 
 

O(|V||E|) 
 

O(|V|) 
 A* 

 
O(|E|) 

 
O(|V|) 

 Floyd-Warshall 
 

O(|V|3) 
 

θ (|V|2 ) 
  

 

IV. CONCLUSION 

Having examined a variety of path finding methods, we 

can conclude that with the use of Floyd-Warshall 

algorithm in our system, the routing of bus paths can be 

done accurately. From the table, it is clear that the Floyd- 

Warshall algorithm provides acceptable time and space 
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requirements even in the worst case situations. It would 

greatly reduce the need of human thought process to plan 

the routes by providing optimal path in lesser time. We 

have considered certain assumptions in this design 

process. The congestion may vary in real time scenario as 

our system would just provide congestion based on past 

data, and there may be traffic jams etc. Also, while 

calculating the time, it’s assumed that the bus won’t have 

any stoppages in between and would head directly to the 

pick up or drop points. It’s also assumed that the buses are 

always available at the time of dropping the passengers 

back home. The arrival time of the buses isn’t considered.  
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