
Volume III, Issue X, October 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 53

Shortest Path Finding Algorithms for Real Road

Network

Agam Mathur
1
, Mayuresh Jakhotia

2
, Anish Lavalekar

3
, Nikita Magar

4

1,2,3,4
Computer Department, VIIT, Pune University

 Abstract -Several graph analysis algorithms for shortest

path can be categorized as single source, single destination,

or all pairs algorithms [4],[7]. Dijkstra’s algorithm is one

such which falls in the first category, and can be used to find

the lowest cost between two nodes when there is a single

source. However, it doesn’t allow negative weights. It may

simply fail in those cases to give correct results. But, in our

system, we need to find the shortest path between on real

road networks. There are several algorithms for this

purpose, such as Bellman-Ford, A*, and Floyd-Warshall. In

Bellman-Ford, the working is similar to Dijkstra’s, i.e. it’s a

single source shortest path problem [4], but, it can handle

negative weight edges. In the Floyd-Warshall algorithm,

every node can be a source, and can be used to calculate the

shortest distance from a source to a destination node. Unlike

Dijkstra’s algorithm, Floyd-Warshall, in case of negative

cycles, will correctly state that there isn’t any minimum

weight path, owing to the unbounded negative weight. In

short, Floyd-Warshall is an appropriate algorithm for our

system which will be used in generating optimal route for all

node pairings.

Keyword -Travelling Salesperson Problem, Time complexity,

Space complexity, Successor node, Intermediate path,

Heuristic function.

I.INTRODUCTION

raph theory has become an important means to

represent and analyze various practical problems. In

this context, a graph is made up of vertices/nodes, and

lines called edges that connect the nodes. We are using

short- est path algorithms in this paper, in order to come

up with a solution for our system. Basically, the categories

of any shortest path algorithm can broadly fall into single

source, single destination, or all-pairs shortest path

algorithms. The single source algorithm can be used to

find the shortest path from a source vertex to all the other

vertices in a graph. The single destination algorithm is

used to find the shortest path in a directed graph, from all

vertices to a single destination. It can be also be seen as a

single source problem by reversing the arcs. The last

category, all-pairs vertices, finds shortest path between

every pair of vertices. The single source problems involve

a single source and can be solved using algorithms such as

Dijkstra’s, and Bellman-Ford if negative edges are

involved. A* algorithm is a single pair and uses heuristics

to speed up the search. All-pair algorithms such as

Johnson’s algorithm and Floyd-Warshall algorithm are

used to find shortest paths between all pairs of vertices.

Johnson’s al- gorithm uses Bellman-Ford and Dijkstra’s

algorithm, and is not efficient in dense graphs. Floyd-

Warshall, on the other hand, is more useful in the case of

dense graphs, such as real road networks. Our system is a

public conveyance system wherein real road networks will

be used. So our graph would be a dense graph, consisting

of all the places as nodes, and the paths connecting the

nodes, as the edges. Here, we are required to find out node

to node path, and not a path from a single source to all the

other nodes. Therefore, single source algorithms such as

Dijkstra’s and Bellman-Ford cannot be used in this case.

Also, since our graph is not a sparse graph, we would not

use Johnson’s algorithm. Floyd-Warshall, on the other

hand, provides the node to node distance as is required for

our system.

II.ALGORITHM ANALYSIS

A.Dijkstra's algorithm:

Dijkstra's algorithm [1],[7]is a single source-single

destination algorithm used to find the shortest path. By

single source algorithm, we mean that there is shortest

path between one source and multiple destinations. Single

destination means that there is shortest path between

multiple sources connecting a single destination. This can

be seen as a single source shortest path algorithm by

reversing the edges. So, basically, Dijkstra's algorithm is a

single source shortest path problem, producing a shortest

path tree for a graph with positive edge path costs.

 In Dijkstra's algorithm, for a given vertex, i.e. node in

the graph, the algorithm finds path with the lowest cost

between that and all other vertices. It's also used to find

cost of shortest path from a single source to a single

destination by stopping the algorithm once the shortest

path to the destination vertex has been determined.

Dijkstra's original algorithm runs in time O |V| , where |V|

is the total number of vertices. Dijkstra's algorithm is

asymptotically the fastest known single-source shortest

path algorithm for arbitrary directed graphs having

unbounded non-negative weights. Dijkstras algorithm is

more general, it is not just restricted to acyclic graphs.

The edges need not be investigated often using this

algorithm. It means that once it has been carried out, the

least path to all permanently labeled nodes can be found

out without the need of a new diagram for each pass. It

implies that it would turn out faster, if edges are relatively

expensive to compute. Also, the order of |V|2 indicates that

it is efficient enough for relatively large problems.

However, it requires that the weights on the edges must be

positive and doesn’t support negative edges. Also,

Dijkstras algorithm considers only the weights between

the vertices to select the shortest path. But, for situations

like real road networks, there can be various parameters

such as the time taken to travel (in case of a bus), the

congestion on the roads, the monetary cost, etc. This

G

Volume III, Issue X, October 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 54

Figure 1: The first two steps of Dijkstras shortest path algorithm,

displaying its breadth-first search properties

 Algorithm doesn’t suffice any such parameters and so, is

limited in its application from such system(s) point of

view.

B. Bellman-Ford Algorithm

Bellman-Ford algorithm[5] is a single source algorithm

used to find the shortest path in a weighted directed graph.

By single source algorithm, we mean that there is shortest

path between one source and multiple destina- tions.

However, unlike Dijkstras, it considers even nega- tive

edge weights. In this algorithm, if a graph contains a cycle

with edges summing up to a negative value, then low

value paths can be created. Bellman-Ford runs in

O(|V|.|E|), where |V| is the total number of vertices, and |

E| is the total number of edges.This algorithm simply

relaxes all the edges until |V|-1 is reached. With the repe-

titions, the number of vertices having correctly calculated

distances grows, thereby all vertices will have correct

distances. This is one of the reasons for the application of

this algorithm to a wider class of inputs. It also in- creases

system performance by allowing splitting of traffic across

several paths, and works well for distributed systems. This

algorithm does not scale well. Network topology can be

changed but the changes made aren0t reflected quickly

due to the spreading of updates from node to node. Also,

there0 s the count to infinity problem wherein if a node

failure occurs, and the node is rendered unreachable from

some other nodes, then those nodes may spend forever

increasing their estimates to reach the node which has

failed.

Figure 2: Working of Bellman-ford algorithm

C. A* Algorithm

A* algorithm is an extension of Dijkstras algorithm de-

scribed above. A* algorithm is used in pathfinding and

efficient graph traversal between nodes. A* algorithm has

better time complexity than Dijkstras algorithm by us- ing

a heuristic function because of which it can guide the

search to the desired solution and hence less time

complexity.

A* algorithm uses Breadth-First-Search strategy to find

the least cost path from a starting node to a final node. A*

uses the cost function f(n) to sort the alternate path

segments in a priority queue. Cost function f(n) is a sum

of two functions g(n) and h(n). g(n) is the actual cost from

starting node to current node n, while h(n) is the heuristic

function which is the estimated cost of the cheapest path

from current node n to final goal node. f(n) = g(n) + h(n)

 A* algorithm accuracy and reduction in time complex-

ity depends largely on the heuristic function used. For a

given problem, many heuristic functions are possible and

they will give different results. For example 8-puzzle

game problem can be solved using two heuristics. Firstly

Figure 3: Consistent property of Heuristic Function

Volume III, Issue X, October 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 55

by ”number of misplaced tiles in board n” and secondly

by ”sum of distances of misplaced tiles to goal positions

in board n”. Research shows that A* algorithm which uses

second heuristic functions performs 10 times better than

A* algorithm implemented by first heuristic.

Heuristic function h(n) used in A* algorithm should be

admissible and consistent for generating optimal results.

Heuristic function h(n) is admissible if it never overesti-

mates the cost to reach the final destination node from the

current node. In other words, heuristic function h(n)

should be too optimistic, that it estimates the cost to be

smaller than it actually is.

Heuristic function h(n) is consistent if for every node n

and for every successor node nof n satisfies:

h(n)<= c(n,n) + h(n)

D. Floyd-Warshall Algorithm

The Floyd−Warshall algorithm [2],[4],[5],[7] (also known

as Floyd’s algorithm, Roy−Warshall algorithm,

Roy−Floyd algorithm, or the WFI algorithm).This

algorithm is a graph analysis algorithm, which is used for

finding transitive closure of a relation R and also for

finding shortest paths in a weighted graph. Weighted

graph may be with positive or negative edge weights (but

with no negative cycles). Single execution of the

algorithm finds lengths of all the shortest paths between

each and every pair of vertices present in the graph ,thus it

does not returns details of the path themselves. To find all

pair of vertices in a graph Floyd −Warshall algorithm will

be used. This algorithm is competitive for dense graphs

and uses adjacency matrices as opposed to adjacency lists.

Consider an instance for TSP is given by W as, Represent

the directed, edge-weighted graph in adjacency-matrix

form.

W = matrix of weights =

𝑤11 𝑤12 𝑤13

𝑤21 𝑤22 𝑤23

𝑤31 𝑤32 𝑤33

.

 wij is the weight of edge (i, j), or infinity if there is no

such edge.

. Return a matrix D, where each entry dij is d(i,j). Could

also return a predecessor matrix, P, where each entry pij is

the predecessor of j on the shortest path from i. Consider

intermediate vertices of a path:

Figure 4: Intermediate vertices of path.

Say we know the length of the shortest path from i to j

whose intermediate vertices are only those with numbers

1, 2, ..., k-1. Call this length Now to extend this from k-1

to k we can use

Figure 5: Alternative Intermediate vertices of path using
Floyd−Warshall algorithm

Two possibilities: 1. Going through the vertex k does n t

help− the path through vertices 1...k-1 is still the shortest.

2. There is a shorter path consisting of two sub paths, one

from i to k and one from k to j. Each sub path passes only

through vertices numbered 1 to k-1 Thus,

dij
(k)=min(dij

(k−1),dik
(k−1)+dkj

(k−1))

Also, dij
(0) =wij

 (since there are no intermediate vertices.) When k

= |V|, we're done. Let n be |V|, the number of

ver-tices. To find all n2 of shortestPath(i,j,k) (for all i

and j) from those of shortestPath(i,j,k−1) requires 2n2

op-erations. Since we begin with shortestPath(i,j,0) =

edge-Cost(i,j) and compute the sequence of n matrices

shortest-Path(i,j,1), shortestPath(i,j,2),...,

shortestPath(i,j,n), the total number of operations used

is n . 2n2 = 2n2 . There-fore, the complexity of the

algorithm is θ (n3).[5],[6]

III. COMPARISON BETWEEN PATH FINDING

ALGORITHM

The worst case time complexities of all above algorithms

are given as follows

Table 1: Comparisons between path finding algorithm

Algorithm

Time complexity

Space complexity
 Dijkstra

O(|V||E|)

O(|V||E|)

 Bellman-Ford

O(|V||E|)

O(|V|)
 A*

O(|E|)

O(|V|)

 Floyd-Warshall

O(|V|3)

θ (|V|2)

IV. CONCLUSION

Having examined a variety of path finding methods, we

can conclude that with the use of Floyd-Warshall

algorithm in our system, the routing of bus paths can be

done accurately. From the table, it is clear that the Floyd-

Warshall algorithm provides acceptable time and space

Volume III, Issue X, October 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 56

requirements even in the worst case situations. It would

greatly reduce the need of human thought process to plan

the routes by providing optimal path in lesser time. We

have considered certain assumptions in this design

process. The congestion may vary in real time scenario as

our system would just provide congestion based on past

data, and there may be traffic jams etc. Also, while

calculating the time, it’s assumed that the bus won’t have

any stoppages in between and would head directly to the

pick up or drop points. It’s also assumed that the buses are

always available at the time of dropping the passengers

back home. The arrival time of the buses isn’t considered.

ACKNOWLEDGEMENT

We feel great pleasure in submitting this literature survey

paper on shortest path finding algorithms. We wish to

express true sense of gratitude towards our project guide,

prof. V.A.Mishra and co-guide prof. R.R.jadhav who at

very discrete step in study of this paper contributed her

valuable guidance and help to solve every problem that

arose.

REFERENCES

[1] Fast Shortest Path Algorithms for Large Road Net-works

Faramroze Engineer Department of Engineer-ing Science

University of Auckland New Zealand
[2] Heuristic shortest path algorithms for transportation

applications: State of the art L. Fua,*, D. Sunb, L.R. Rilettc

aDepartment of Civil Engineering, Uni-versity of

Waterloo, Waterloo, ON, Canada N2L 3G1

bCollege of Automation, Chongqing University,

Chongqing, 400044, China cMid-America Transporta
tion Center, University of Nebraska-Lincoln, W339

Nebraska Hall, P.O. Box 880531, Lincoln, NE 68588-

0531, USA
[3] Mining the Shortest Path within a Travel Time Constraint in

Road Network Environments Eric Hsueh Chan Lu, Chia-

Ching Lin, and Vincent S. Tseng Department of Computer
Science and Information Engineering National Cheng-Kung

University Tainan, Taiwan, R.O.C.

[4] Design and implememntation of
multiparameter Dijkstra' s(MPD) algorithm:A shortest path

algorithm for real-road networks.(September 2011)

1Nishtha keswani,2 Dinesh Gopalani 1asistant professor,
central universal of Rajsthan, India
2assistant professor, Malviya National Institute Of

Technology, Jaipur. (IJAER) 2011, Vol. No. 2, Issue No. III,
September 2011

[5] Shortest path algorithms, Wikipedia, the free encyclo-pedia

en.wikipedia.org/wiki/Shortest_path_problem
[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein.MIT

Press/McGraw-Hill, ISBN: 0-262-03293-7.I Chapter 25 −

All-Pairs Shortest Paths
[7] Algorithm lectures note on shortest path Jeff Erickson

http://www.cs.uiuc.edu/ jeffe/teaching/algorithms/ I Lecture
20 − All-pairs shortest paths

[8] Open Shortest Path First (OSPF) Conformance and

Performance Testing
[9] A* search algorithm, Wikipedia, the free encyclo-pedia

en.wikipedia.org/wiki/A*_search_algorithm

