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Abstract - In this paper, a novel heuristic population-based 

seeker optimization algorithm (SOA) is utilized for the optimal 

solution of different economic load dispatch (ELD) problems in 

power systems. In the SOA, the act of human searching 

capability and understanding are exploited for the purpose of 

optimization. The effectiveness of the algorithm is tested on a 

number of power systems, including the systems with 40, 10 and 

15 generating units. The test power systems are having valve 

point effects, prohibited operating zones, ramp rate limits, as 

well as, transmission network loss, and multiple fuels with valve 

point effects. The obtained results are compared with those of 

the other state-of-the-art heuristic optimization techniques 

published in the literature. The outcome of the present work is 

to establish the SOA as a promising alternative approach to 

solving the ELD problems in practical power systems. Both the 

near-optimality of the solution and the convergence speed of the 

algorithm are promising.  

 

    Keywords- economic load dispatch, multiple fuels, prohibited 

operating zones, ramp rate limits, seeker optimization algorithm, 

valve point effect. 

  

I. INTRODUCTION 

 

conomic load dispatch (ELD) is defined as the process of 

allocating generation levels to the generating units in 

such a manner, so that the system load is supplied entirely 

and most economically [25] Various classical methods such 

as gradient method, Lagrangian relaxation algorithm, lambda 

iteration method, non-linear programming, linear 

programming, dynamic programming and quadratic 

programming were proposed by the researchers to solve the 

ELD problems. Taking valve loading effect into account, the 

cost function of generator is of non-convex in nature [22]. 

The theoretical assumptions behind previous algorithms 

(except dynamic programming) may not be suitable for 

convexity and differentiability of the ELD problems. 

Furthermore, these methods are local optimizers in nature, 

i.e. if the initial guess is in the neighborhood of a local 

solution these methods converge to local solutions instead of 

the global ones. 

 generator is of non-convex in nature [23]. The theoretical 

assumptions behind previous algorithms (except dynamic  

 

 

 

 

 

 

 

 

programming) may not be suitable for convexity and 

differentiability of the ELD problems. 
The dimensions of the ELD problem become extremely large 

for dynamic programming approach. Consequently, it 

imposes heavy computational burden. To alleviate these 

deficiencies, artificial intelligence methods such as binary 

genetic algorithm (GA) [12], improved GA with multiplier 

updating (MU) (IGA-MU) [9], real coded GA (RCGA) [2], 

Tabu search [14], Hopfield neural network [8], evolutionary 

strategy [19], particle swarm optimization (PSO), bacterial 

foraging with Nelder-Mead (BF-NM) algorithm [18], ant 

colony optimization (ACO) [20], and Biogeography-based 

optimization (BBO) [5]  are being used to solve the ELD 

problems. Moreover, several hybrid methods like 

combination of GA, and pattern search (PS) with sequential 

quadratic programming (SQP) (GA-PS-SQP) [1]; chaotic 

differential evolution (DE) (CDE) [10]; modified DE (MDE) 

[3]; hybrid DE with BBO (DE-BBO) [4] are also proposed 

for this specific purpose. 

Seeker optimization algorithm (SOA) [11] is, essentially, a 

novel population based heuristic search algorithm. It is based 

on human understanding and searching capability for finding 

an optimum solution. In the SOA, optimum solution is 

regarded as one which is searched out by a seeker population. 

The underlying concept of the SOA is very easy to model 

and relatively easier than other optimization techniques 

prevailing in the literature.  

The rest of the paper is organized as follows. In Section II, 

mathematical modeling of the ELD problem is done. In 

Section III, an objective function is formulated which 

requires to be optimized. The SOA is narrated in Section IV. 

Test cases and simulation results are presented in Section V 

to demonstrate the performance of the algorithm for the 

different ELD problems. In Section VI, conclusions of the 

present work are drawn.  

 
II.   MATHEMATICALMODELING of the ELD 

PROBLEM 

 

The prime objective of the ELD problem is to minimize 

the total generation cost in power system (with an aim to 

deliver power to the end user at minimal cost) for a given 

E 
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load demand with due regard to the system equality and 

inequality constraints [25] 

 
A. ELD with Quadratic Cost Function  

 

The problem of ELD is multimodal, non-differentiable and 

highly non-linear. Mathematically, the problem can be stated 

as in (1). The simplified cost function of each generator unit 

can be represented as in (2). 

hPFFMin
NG

i
iiT /$)(

1

                  

                          (1)  

hPcPbaPF iiiiiii /$)( 2                                    (2) 

 

In (1) and (2); TF is total generation cost; iF is cost 

function of the ith generator; iii cba ,,  are cost coefficients 

of the ith generator;

 
iP  power output of the ith generator; 

and NG  is the number of generators. 

 
B. ELD Problem with Valve Point Effect 

 

The cost function of a fossil fired plant, owing to valve 

point effect, is highly non-linear. Hence, the cost function is 

realistically denoted as a recurring rectified sinusoidal 

function [22]. Each generator has multi-valve steam turbines 

and cost functions comprising of very different input-output 

curves. To consider the valve-point effect, a sinusoidal 

function is introduced into the quadratic cost function of (2) 

as given in (3). 

hPPfePcPbaPF iiiiiiiiiii /$))(sin()( min2 

  

(3) 

It is to be noted here that the fuel cost coefficients ie  and 

if  are introduced in (3) to model valve point effect for the 

ith generator.  Ripples are introduced in the input-output 

curves due to the valve-point effect, and thereby, the number 

of local optima is increased. Variation of fuel cost )( ii PF  

due to the valve-point effect with the change of generation 

value iP  is shown in Fig. 1. 

 

 
 

Fig. 1. Input-output curve with valve-point effects: a, b, c, d, e-valve points 

 

C. ELD Problem with Valve Point Effect and Multiple Fuel 

Options 

 

To model an accurate and practical ELD problem, both 

valve point effect and multiple fuel options are also taken 

into account in [9]. Units with multiple fuels option utilize 
―hybrid cost function‖. Each segment of the hybrid cost 

function bears some information about the fuel being burnt 

for the unit’s operation. The single continuous quadratic 

function of each unit is replaced  by several piecewise 

quadratic functions that reflect the effects of fuel type 

changes and the generators must identify the most economic 

fuel to be burnt. To frame the valve point effect and multiple 

fuels, the cost function [9] may be represented as  
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where ika  , ikb , ikc are the cost coefficients of ith generator 

for fuel type k; ike , ikf are the cost coefficients of ith 

generator reflecting valve-point effects for fuel type k ; and 
min

ik
P is the minimum output of ith generator using fuel type 

k. The discontinuous characteristics of the generators by 

considering the multiple fuel options are shown in Fig. 2. 

 

 
Fig.  2. Piecewise quadratic and incremental cost function of a generator. 
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D. Equality and Inequality Constraints of ELD Problems 

 
The problems of ELD are subject to the following 

constraints. 

1) Real Power Balance Constraint: The total generated 

power should be same as the total load demand 

( DP ) plus the line loss ( LP ). The real power 

balance operation can be modeled as in (5).

 

 

 

 
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NG

i
LDi PPP

1

                                               (5) 

 
The transmission loss is a function of active power 

generation of each generating unit for a given load 

demand. It may be expressed as a quadratic function 

of generations (using B coefficient matrix) as given 

by (6) [17] 
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       (6)   

 
where ijB is the (i-j)th element of loss coefficient 

symmetric matrix (B); 0iB  is the ith element of the 

loss coefficient vector; and 00B  is the constant loss 

coefficient 

 

2) Generation Capacity Constraints: The power output 

of each generator should be within its minimum and 

maximum limits. The generating capacity 

constraints are written as in (7)
 
 

 
maxmin

iii PPP                                              (7)  

 

where min
iP and  max

iP are , respectively, the 

minimum and the maximum output of the ith 

generator. 

 

3) Ramp Rate Constraints: Ramp rate constraints 

govern the actual operating ranges of all the online 

units. The ramp-up and ramp-down limits may be 

represented by the following equation 

 

iii URPP  0  ,and iii DRPP 0                       (8)  

 

where 0
iP is the previous power output of the ith 

generating unit; iUR and iDR are the up-rate and the 

down rate limits of the ith generator respectively. To 

consider the ramp rate limits constraints and power 

output limits constraints at the same time, (7) and 

(8) can be written as an inequality constraint as 

given by the following equation.
  

                                                                                             

},min{},max{ 0max0min
iiiiiii URPPPDRPP  (9)

 
 

4) Prohibited Operating Zone Constraints: The 

prohibited operating zones are the range of output 

power of a generator where the operation causes 

undue vibration of the turbine shaft. Normally, 

operation of a unit is avoided in such regions. Hence, 

mathematically the feasible operating zones of a unit 

can be described as follows 
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where j  represents the number of prohibited operating zones 

of the ith unit; 
lower

jiP , , 
upper

jiP , are the lower and the upper 

limits of the jth prohibited operating zone of the ith unit 

respectively,; ipz is the total number of prohibited operating 

zone of the ith unit. By considering the prohibited operating 

zones, the discontinuous characteristics of the generators are 

shown in Fig. 3. 

 

 
 

Fig.  3. Input-output curve with prohibited operating zones. 

 
III. FORMULATION OF THE OBJECTIVE FUNCTION 

 

In order to treat the problem as a normalized maximization 

function, the objective function ( )(OF  ) is framed as in 

(11).   
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In (11), the weighing factor in the numerator (10
6
) is 

selected to bring the value of )(OF within two/three digit 

figure. The factors 100 and 1000 in (11) are arbitrary 

weighting factors to amplify the associated terms properly to 

partly compete with the cost term. 

 

  

IV. SEEKER OPTIMIZATION ALGORITHM AND 

ITS APPLICATION TO THE ELD PROBLEM 
 

A.  Seeker Optimization Algorithm 

 

The SOA [11] is a population-based heuristic search 

algorithm. In the SOA, the act of human searching capability 

and understanding are exploited for the purpose of 

optimization. In this algorithm, the search direction is based 

on empirical gradient by evaluating the response to the 

position changes and the step length is based on uncertainty 

reasoning by using a simple fuzzy rule. It regards the 

optimization process as an optimal solution obtained by a 

seeker population. Each individual of this population is 

called a seeker. The total population is randomly categorized 

into three subpopulations. These subpopulations search over 

several different domains of the search space. All the seekers 

in the same subpopulation constitute a neighborhood. This 

neighborhood represents the social component for the social 

sharing of information. 

 
B.  Steps of Seeker Optimization Algorithm 

 

In the SOA, a search direction ( )(td ij ) and a step length 

( )(tij ) are computed separately for each ith seeker on each 

jth variable at each time step t , where 0)( tij  and 

}1,0,1{)( tdij . Here, i represents the population number 

and j represents the optimizing variable number.  

 

V.  TEST CASES AND SOLUTION RESULTS 

 

The software of the present work is written in MATLAB-

7.3 language and executed on a 3.0-GHz Pentium IV 

personal computer with 512-MB RAM. 

  

A.  Description of the Test Systems 

 

To assess the efficiency and to establish the efficacy of the 

SOA, the following three test systems are considered 

 

Test system 1: 40-generating units with valve point effect; 

Test system 2: 10-generating units with valve point effect 

and multiple fuels; and  

Test system 3: 15-generating units with prohibited 

operating zones, ramp rate limits, and 
transmission network loss but no valve 

point effect ;  

 

Test System 1: A system with 40 generators with valve point 

effect and transmission network loss but no ramp rate limits 

and prohibited operating zones is considered as the test 

system 1. The input data are given in [22]. The load demand 

is 10500 MW. The best results  obtained from the SOA are 

compared with those obtained by using improved fast 

evolutionary programming (EP) (IFEP) [22], hybrid EP with 

SQP (EP-SQP) [1], PSO with local random search (PSO-

LRS) [21], CDE [10], new PSO (NPSO) [21], NPSO with 

LRS (NPSO-LRS) [21], combined PSO with real-valued 

mutation (CPSO-RM) [15], ACO [20], self-organizing 

hierarchical PSO (SOH-PSO) [6], GA-PS-SQP [1], quantum 

PSO (QPSO) [16], BBO [5], BF-NM [18], DE-BBO [4], 

RCGA [2], improved coordinated aggregation-based PSO 

(ICA-PSO) [24], and PSO with both chaotic sequences and 

crossover operation (CCPSO) [17]. The best solution of the 

generation schedules and the total generation cost etc for this 

test system as obtained from 50 random trial runs of the SOA 

are presented in Table 1. Convergence results for the 

different algorithms with the same PD are also presented in 

Table 2. Table 3 shows the frequency of attaining the 

minimum cost within different ranges for this test system out 

of 50 independent trials. The convergence profile of the cost 

function is depicted in Fig. 4. 

 

Test System 2: A system comprising of 10 thermal units with 

valve point effect and multiple fuels option is considered as 

the test system 2. The input data are taken from [9]. The load 

demand is 2700 MW. Transmission loss is not considered in 

this case. The best results obtained by the SOA are compared 

with those obtained by IGA-MU [9], conventional GA with 

MU (CGA-MU) [9], PSO-LRS [21], NPSO [21], NPSO-LRS 

[21], RCGA [2], ACO [20], BBO [5], and DE-BBO [4]. The 

best solution of the generation schedules and the total 

generation cost etc for this test system as obtained from 100 

independent trial runs of the algorithms are shown in Table 4. 

Convergence results for the algorithms with the same PD are 

presented in Table 5.  Table 6 shows the frequency of 

attaining minimum cost within different ranges for this test 

system out of 100 independent trials. The convergence 

profile of the cost function is depicted in Fig. 5.   

 

Test System 3: Experiments are conducted on 15-generating 

unit power systems. In this test power systems; the prohibited 

operating zones, ramp rate limits, and transmission network 

losses are considered. The system input data and B 

coefficients are taken from [12]. Units 2, 5, and 6 have three 

prohibited zones while that for unit 12 is of two. For this test 

system load demand is 2630 MW. The best results obtained 

by the SOA are compared to those obtained by GA [12], PSO 

[12], CPSO1 [13], CPSO2 [13], BF-NM [18], SOH-PSO [6], 

parallel asynchronous PSO (PAPSO) [23], PSO with 

modified stochastic acceleration factors (PSO-MSAF) [23], 

MDE [3], PSO with chaotic sequences (CSPSO) [17], 

conventional PSO with the constraint treatment strategy 

(CTPSO) [17], and PSO with crossover operation (COPSO) 

[17]. The best solutions of the generation schedule, the total 
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optimal generation cost etc for this test system as obtained 

from 50 independent trial runs of the SOA are presented in 

Table 7. Convergence results for the algorithms with the 

same PD are presented in Table 8.  The convergence profile 

of the cost function is depicted in Fig. 6 

 

 

 

TABLE 1 
SOA-BASED BEST RESULTS FOR THE TEST SYSTEM 1 WITH PD=10500 MW

 

TABLE 2 
CONVERGENCE RESULTS (50 TRIAL RUNS) FOR THE TEST SYSTEM 1 WITH PD = 10500 MW 

 
Algorithms Total generation cost ($/h)  Algorithms Total generation cost ($/h) 

Minimum  Maximum Average  Minimum Maximum Average 

IFEP  122624.3500 125740.6300 123382.0000  GA-PS-SQP  121458.14 NR* 122039 

EP-SQP  122324 NR* 122379  QPSO  121448.21 NR* 122225.07 
PSO-LRS   122035.7946 123461.6794 122558.4565  BBO  121426.953 121688.6634 121508.0325 

CDE  121741.9793 NR* 121814.9465  BF-NM  121423.63792 NR* 122295.1278 

NPSO  121704.7391 122995.0976 122221.3697  DE-BBO  121420.8948 121420.8968 121420.8952 
NPSO-LRS  121664.4308 122981.5913 122209.3186  RCGA   121418.5425 121628.5987 121504.1169 

CPSO-RM  121555.32 123094.98  122281.14  ICA-PSO  121413.20 121453.56 121428.14 

ACO  121532.41 121679.64 121606.45  CCPSO  121403.5362 121525.4934 121445.3269 
SOH-PSO 121501.14 122446.30 121853.57  SOA  113890 114000 113250 
NR* means not reported in the referred literature 

                                                                      TABLE 3 
FREQUENCY OF CONVERGENCE IN 50 TRIAL RUNS FOR 40-GENERATING UNITS WITH PD = 10500 MW 

 

 
Fig.4. Convergence profile of the total generation cost for the test system1 
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P1 93.3423 P11 308.7892 P21 508.1364 P31 167.7709 

P2 97.4103 P12 277.1260 P22 501.0253 P32 149.3685 

P3 101.2452 P13 392.8826 P23 506.5673 P33 167.6685 

P4 164.2993 P14 395.1955 P24 487.7431 P34 160.6820 

P5 84.0175 P15 381.0143 P25 480.5522 P35 169.2923 
P6 123.2729 P16 380.9107 P26 505.1173 P36 165.5492 

P7 255.7977 P17 437.8174 P27 112.9493 P37 99.6996 

P8 263.8875 P18 445.1430 P28 124.1613 P38 86.2462 
P9 280.2526 P19 451.5323 P29 117.1892 P39 89.7858 

P10 264.0890 P20 460.1727 P30 90.1045 P40 412.0431 

Total generation (MW) 10759.85 
Total transmission loss (MW) 259.83 

Power mismatch (MW) 0.02 

Total generation cost ($/h) 113890 

Time/iteration (s) 0.05 

Algorithms Range of total generation cost (  103 , $/h) 

<
1

2
0

.0
 

1
2
0

.0
-1

2
1

.5
 

1
2
1

.5
-1

2
2

.5
 

1
2
2

.5
-1

2
3

.0
 

1
2
3

.0
-1

2
3

.5
 

1
2
3

.5
-1

2
4

.0
 

1
2
4

.0
-1

2
4

.5
 

1
2
4

.5
-1

2
5

.0
 

1
2
5

.0
-1

2
5

.5
 

1
2
5

.5
-1

2
6

.0
 

  
  
>

1
2
6

.0
 

SOA  50 0 0 0 0 0 0 0 0 0 0 

DE-BBO   0 50 0 0 0 0 0 0 0 0 0 

BBO  0 38 12 0 0 0 0 0 0 0 0 

QPSO  0 2 27 20 1 0 0 0 0 0 0 
SOH-PSO  0 0 50 0 0 0 0 0 0 0 0 

NPSO-LRS 0 0 40 10 0 0 0 0 0 0 0 

NPSO  0 0 37 13 0 0 0 0 0 0 0 

PSO-LRS  0 0 26 17 7 0 0 0 0 0 0 

CPSO-RM 0 41 8 1 0 0 0 0 0 0 0 
IFEP  

0 0 0 11 
2
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9 2 2 0 0 0 
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TABLE 4 
BEST RESULTS FOR THE TEST SYSTEM 2 WITH PD = 2700 MW 

 
Unit  

 

                   SOA           DE-BBO                       BBO              NPSO-LRS              IGA-MU  
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P1 186.4532 1 213.4589 2 212.9 2 223.335 2 219.126 2 
P2 102.1240 2 209.4836 1 209.4 1 212.195 1 211.164 1 

P3 399.4492 1 332.0000 3 332.0 3 276.216 1 280.657 1 

P4 185.6678 1 238.0269 3 238.3 3 239.418 3 238.477 3 

P5 358.6526 1 269.1423 1 269.2 1 274.647 1 276.417 1 

P6   238.0269 3 237.6 3 239.797 3 240.467 3 

P7 197.4176 2 280.6144 1 280.6 1 285.538 1 287.739 1 
P8 420.7243 1 238.1613 3 238.4 3 240.632 3 240.761 3 

P9 206.8849 1 414.7001 3 414.8 3 429.263 3 429.337 3 

P10 315.4986 3 266.3850 1 266.3 1 278.954 1 275.851 1 
TG* 2700 1 2700 2700 2700 

TTL* 0 0 0 0 0 

PM* 0 0 0 0 0 
TGC* 536.0225 605.6230127 605.6387 624.127 624.517 

TI* 0.14 0.48 0.80 0.52 7.25 
TG* means total generation (MW), TTL* means total transmission loss (MW), PM* means power mismatch (MW), TGC*means total generation cost ($/h),  TI*means time/iteration 

 

  

TABLE 5 
CONVERGENCE RESULTS (100 TRIAL RUNS) FOR THE TEST SYSTEM 2 WITH PD = 2700 MW 

 
Algorithms Total generation cost ($/h)  Algorithms Total generation cost ($/h) 

Minimum  Maximum Average  Minimum  Maximum Average 

IGA-GA  627.5178 630.8705 625.8692  RCGA  623.8281 623.8814 623.8495 
CGA-MU  624.7193 633.8652 627.6087  ACO ] 623.70 624.09  623.90  

PSO-LRS  624.2297 628.3214 625.7887  BBO ] 605.6387 605.9103 605.8622 

NPSO 624.1624 627.4237 625.2180  DE-BBO ]  605.6230 605.6231 605.6252 
NPSO-LRS  624.1273 626.9981 624.9985  SOA 536.0225 601.2624 600.0214 

 

 

 

TABLE 6 
FREQUENCY OF CONVERGENCE IN 100 TRIAL RUNS FOR 10-GENERATING UNITS WITH PD = 2700 MW 
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SOA  100 0 0 0 0 0 0 0 0 0 0 0 0 
DE-BBO  0 100 0 0 0 0 0 0 0 0 0 0 0 
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Fig.5. Convergence profile of the total generation cost for the test system 2. 

 

 

 

 

 

 

 
TABLE 7 

SOA-BASED RESULTS FOR THE TEST SYSTEM 3 WITH PD = 2630 

MW 

 
 

TABLE 8 
CONVERGENCE RESULTS (50 TRIAL RUNS) FOR THE TEST SYSTEM 3 WITH PD = 2630 MW 

 

 

 

 
 

Fig. 6. Convergence profile of the total generation cost for the test system 3 

.  

 

CONCLUSION 

In this paper, a novel evolutionary optimization technique, 

SOA has been successfully implemented to solve different 

ELD problems. It has been observed that the SOA has the 

ability to converge to a better quality near-optimal solution 

and possesses better convergence characteristics and 

robustness than other prevailing techniques reported in the 

recent literatures. It is also clear from the results obtained by 

different trials that the SOA is free from the shortcoming of 

premature convergence exhibited by the other optimization 

techniques. Thus, this SOA technique may become very 

promising for solving some more complex engineering 

optimization problems for future researchers. 
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