
Volume III, Issue IA, January 2014                          IJLTEMAS                                                   ISSN 2278 - 2540 
 

www.ijltemas.in Page 86 
 

  
 
       An Alternate Design for Wireless Sensor 

Network Node Processor 

 
Priyanka Sao 

Gyan Vihar School of Engineering and 
Technology ,SGVU, Jaipur, 

Rajasthan,India 
 
priyankasao2010@gmail.com  

ABSTRACT  
Wireless Sensor Networks (WSN) are a new and very 
challenging research field for embedded system design 
automation, as their design must enforce stringent 
constraints in terms of power and cost. WSN node 
devices have until now been designed using off-the-
shelf low-power microcontroller units (MCUs), even if 
their power dissipation is still an issue and hinders the 
wide-spreading of this new technology. In this paper, 
we propose a new architectural model for WSN nodes 
(and its complete design-flow in synthesizable VHDL). 
Our approach combines hardware specialization and 
dividing the ALU operation in MSB and LSB unit 
operations at the same clock cycle thereby reducing 
the latency of processor and also a low-power solution 
for WSN node processor design. 
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Hardware Specialization, Low-Power Design, WSN Node  
1. INTRODUCTION  

 
Wireless Sensor Network (WSN) is a fast 

evolving tech- nology having a number of 
potential applications in various domains of 
daily-life, such as structural and 
environmental monitoring, medicine, military 
surveillance, robotic explo- rations etc. A WSN 
is composed of a large number of sen - sor 
nodes that are usually deployed either inside a 
region of interest or very close to it. WSN 
nodes are low-power embedded devices 
consisting of processing and storage com-
ponents (a processor connected to a RAM 
and/or flash mem- ory) combined with 
wireless communication capabilities (RF 
transceiver) and some sensors/actuators. 
Designing a WSN node is a daunting task, 
since the de-signers must deal with many 
stringent design constraints. For example, 
because these nodes must have small form-
factors and limited production cost, it is not 
possible to pro-vide them with significant 
power sources [23]. 

 
 
their energy consumption is often the most crit-ical 
design parameter.  

As far as their design is concerned, WSN nodes have 
until now been based on low-power MCUs such as 
MSP430 [22] and ATmega128L [3]. These programmable 
processors pro-vide a reasonable processing power with 
low power consump-tion at a very affordable cost. Most 
of such MCU-packages also offer a limited amount of RAM 
(from a few hundred Bytes to a few kilo-Bytes) and non-
volatile flash memory.  

However, these processors are designed for low-power 
op-eration across a range of embedded system 
application set-tings. As a consequence, they are not 
necessarily well-suited to WSN node as they are based on 
a general purpose, mono-lithic compute engine. On the 
software end, WSN nodes generally rely on a light -
weight Operating System (OS) layer to provide 
concurrency management for both external event 
handling and/or application task management.  

Eventually, power dissipation of current low-power 
MCUs still remains orders of magnitude too high for many 
poten-tial applications of WSN. We believe that the 
hardware spe-cialization is an interesting way to further 
improve energy efficiency: instead of running the 
application/OS tasks on a programmable processor, we 
propose to generate an ap-plication specific micro-
architecture, tailored to each task of the application at 
hand.  

We propose such an approach where a WSN node 
archi-tecture is made of several micro- tasks that are 
activated on an event-driven basis, each of them being 
dedicated to a specific task of the system (such as event-
sensing, low-power MAC, routing, and data processing 
etc.). By com- bining hardware specialization with power 
reduction tech- niques such as power -gating, we can 
drastically reduce both dynamic (thanks to specialization) 
and static power (thanks to power-gating). The impact of 
the induced loss of flexibil- ity is discussed in Section 3. 

The contributions of this work are two-fold: 
 

• We provide an integrated system-level design-flow 
for micro-task-based WSN architectures. In this 
flow, the behavior of each micro-task is specified in 
C and is mapped to an application specific micro-
architecture using a modified version of a 
retargetable compiler in-  
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frastructure. 
 

• We use this flow to perform design space 
exploration by exploring the trade-off in power/area 
that can be obtained by modifying the bitwidth of 
the generated micro-tasks, and compare the 
obtained results to those achieved by using an off-
the-shelf low-power MCU such as the MSP430.   

In particular, our experiments show that dynamic power 
sav-ings by one to two orders of magnitude can be 
obtained for different control-oriented tasks of a WSN 
application (w.r.t. the MSP430). Besides, the static power 
profile of our ar-chitectural model also remains very low 
(thanks to power-gating).  

The rest of this paper is organized as follows. We start 
by presenting the related work in Section 2 and highlight 
our proposed system-model and notion of micro-task in 
Section 3. Section 4, thoroughly covers our complete 
design-flow and in Section 5, we present experimental 
results for design space exploration and corresponding 
power benefits. Finally, we conclude and draw future 
research directions in Section 6. 
2. RELATED WORK   

As mentioned in the introduction, power efficiency is one of 
the most important design parameter for WSN nodes, and 
consequently a lot of efforts have been made to propose 
energy efficient implementations of such devices.  

To design an energy-aware WSN node, it is mandatory to 
analyze its power dissipation characteristics. A canoni-cal 
WSN node consists of four subsystems: i) a computing 
subsystem having an MCU, ii) a communication subsystem 
having RF transceiver, iii) a sensing subsystem having the 
sensor/actuator interfaces and iv) a power Supply subsys-
tem. Among them, communication and computation sub-
systems consume bulk of the power-budget [20, 7], and it is 
generally accepted that e ff orts toward energy reduction 
should target both of them in particular.  

As far as reduction in communication energy is concerned, 
there have been a lot of efforts put on the communication-
stack energy optimization and low power RF technology, in-
cluding energy-efficient routing algorithms, low-power MAC 
protocols, efficient error correction codes and power-aware 
transmission techniques (See [1] for a survey).  

On the other hand, low-power micro-architectures and 
more specifically operating systems (OS) [6, 19] (customized 
to the WSN domain) have received a great deal of attention 
in the last few years. Even though an exhaustive survey is 
out of the scope of this work, we will highlight some of the 
most significant contributions in this domain.  
2.1 WSN-related OS   

Task, power and device management are some of the core 
features of a typical WSN OS. TinyOS [19] is one of the 
earliest and the most commonly used OS in WSN. It pro-
vides a component-based event-driven concurrency model 
without explicit thread management. Contiki [6] is another 
frequently used WSN OS that proposes a simplified thread 
execution model (named protothread ), in which preemption 

can only occur at specific points in the Task Control Flow. 
TinyOS and Contiki have a memory foot-print of around 1 kB 
and 4 kB respectively, and hence require a significant amount 
of memory for their operation. Our approach is dif-ferent 
since it allows multiple micro-tasks to run in parallel, each 
one having its own dedicated processing resource.  
2.2 Power Analysis of WSN MCUs   

As far as low-power micro-controllers (e.g. MSP430 and 
ATmega128L) are concerned, they share many characteris- 

 
Table 1: Actual and normalized power consumption for 
various low-power MCUs.  

WSN Normalized Actual 
MCU Power Power 

   

ATmega103L[2] 66 mW (@ 16 MHz) 5.5 mA (@ 4 MHz, 3.0V) 
   

ATmega128L[5, 7] 48 mW (@ 16 MHz) 8 mA (@ 8 MHz, 3.0V) 
   

MSP430F1611[9] 24 mW (@ 16 MHz) 500 μA (@ 1 MHz, 3.0V) 
MSP430F21x2[22] 8.8 mW (@ 16 MHz) 250 μA (@ 1 MHz, 2.2V) 

 
tics: a simple datapath (8/16-bit wide), a reduced 
number of instructions (only 27 instructions for the 
MSP430), and several power saving modes which allow 
the system to select at runtime the best compromise 
between power saving and reactivity (i.e. wake up time).  

Most of the current WSN nodes are built on these com-
mercial MCUs. For example, Mica2 mote [5] has been widely 
used by the research community and is based on Atmel’s AT-
mega128L. The same MCU has also been used by the design-
ers of the eXtreme Scale Mote (XSM) [7]. The Hydrowatch 
platform is built on the MSP430F1611 whereas Texas In-
struments has launched a series of MCUs, MSP430F21x2, 
which is specialized for WSN nodes [22]. Table 1 summa-
rizes power consumptions of these MCUs at a normalized 
frequency of 16 MHz along with the actual consumptions 
present in the literature.  

It is an acknowledged fact that the power budget of a WSN 
node that would rely only on energy harvesting technolo-gies 
is estimated to be around 100 μW [21]. Comparing this 

constraint with that of current MCUs power consumption 
profiles clearly drives us toward alternative architectural so-
lutions (e.g. hardware specialization of the system).  
2.3 Power Efficient Hardware Synthesis   

High-Level Synthesis and retargetable compiler for ASIP 
(Application Specific Instruction Set Processor) have been a 
very active research domain for the last 15 years. Even if 
there are still many open research issues; there now exist 
several mature academic/commercial tools (e.g. XPilot [14], 
Spark [12], NISC [4, 11], Catapult-C from Mentor Graphics, 
Impulse-C, etc.) that are capable of producing specialized 
hardware description from software specification in C/C++.  

Interestingly, all these tools share a common characteris-
tic: they generally see hardware specialization as a mean to 
improve performance over a standard software imple-
mentation. This performance improvement however often 
comes at the price of an increased area cost (co -processor 
or instruction -set extension requires additional area). Of 
course, these specializations also have a significa nt impact 
on power efficiency, since they allow for a drastic reduction 
of dynamic power of the system.  

Indeed, except from Fin et al. [8] and L’Hours et al. [16], 
very few papers have addressed the problem of using pro-
cessor specialization as a mean to reduce silicon footprint. 
We believe that in the context of WSN node architecture, 
where silicon area and ultra low-power are the two main 
design issues, such an approach deserves attention.  

The following section presents an original approach which 
builds on this idea. More specifically, we propose a new ar-
chitectural model (along with a complete system-level 
downto gate-level design-flow) for WSN nodes design, based 
on the notion of concurrent power-gated hardware micro-tasks. 
3. PROPOSED APPROACH   

WSN applications, being event- driven in nature, can be 
represented as Tasks Flow Graphs (TFG) where a task ex-
ecution is triggered by events, be they external or produced by 
another task. Fig.1 shows the TFG of a temperature-sensing 
application which periodically senses the tempera- 
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Figure 1: A task flow graph (TFG) presenting the micro-
tasks running on a temperature-sensing node. 
 
ture and may then send a message to its base station 
depend-ing on the observed value. This application involves 
many tasks: updating neighboring nodes information (for 
multi-hop routing), sending beacons to them for starting the 
data transmission, waiting for their acknowledgment, etc.  

All these control-oriented tasks are spread across differ-ent 
layers of the communication stack and involve further sub-
tasks associated to them. For instance, calculating the next 
node in a multi-hop system involves an efficient rout-ing 
algorithm that is an integral part of network layer of the 
communication stack. Similarly, sending beacon and data 
packets involve physical layer functions that exchange data 
between I/O peripherals of MCU and RF transceiver using 
SPI-protocol. In typical WSN node, such tasks are handled by 
an MCU and corresponding OS that provides support for 
multi-tasking features.  

In our approach, we propose to implement each of these 
concurrent tasks in the form of a set of customized hardware 
micro-tasks so as to drastically reduce its power dissipation 
thanks to specialization.  

In this section, we briefly discuss our proposed system-
level execution model and power-gating technique. Subse-
quently, we introduce the notion of micro- task and highlight 
the architecture of a WSN node based on micro-tasking. 
 
3.1 System-level Execution Model   

Our proposed node is based on an event -centric 
concur- rency model where a hardware monitor turns-
on/off each micro-task upon receiving a specific event or 
a set of events with the help of power-gating technique. 

Power-gating  is a well-known VLSI circuit-level technique 
used to reduce both dynamic and static power.  It 
consists in adding a sleep transistor  between the actual 
Vdd (power supply) rail and the component’s Vdd  , thus 
creating a virtual supply  voltage  called V vdd as illustrated 
in Fig. 2. Sleep transistor allows the supply voltage of 
the block to be cut off to dramatically reduce leakage  
currents. It is different than clock-gating which only reduces 
the dynamic power of the circuit.  

The basic goal of proposed execution model is to achieve 
an ultra low-power system with a simpler task-management 
strategy that best-suits our micro-task-based system archi-
tecture. The monitor is an FSM that will commence its 
execution when certain starting conditions are met and will 
run to finish. During each execution state, micro-tasks may 
be activated or deactivated according to events received by 
the monitor. To simplify the matter, we restrict ourselves to 
such multi-tasking system in which a micro-task can not be 
interrupted and runs to completion.  

The monitor also ensures that no two micro-tasks having a 
shared -storage or I/O- resource are active simultaneously at 
a given time instant. This mutual-exclusiveness allows 
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 Architecture of a generic micro-task. 
  

a drastic simplification of access control logic of shared re-
sources resulting in a more efficient design in terms of area 
and power. In fact, there will be no need for tri-state or 
multiplexer logic at shared resource interfaces in our model.  
3.2 Notion of Micro-task   

Each task of a TFG can be mapped onto a specialized 
hardware structure called a micro-task. This hardware can 
be seen as a small MCU datapath micro-architecture, 
driven by a control FSM that sequence/executes the 
micro-code corresponding to the task at hand. It can 
access some shared memories, and can be directly 
connected to some of the peripheral I/O ports.  

At first glance, our approach may seem similar to the 
pro-cessor specialization of Gorjiara et al. [4] however, 
there are two significant differences. First, our main goal 
is to min-imize the silicon footprint of the resulting micro-
task, im-proving performance is only a secondary 
objective. Second, our micro -tasks should be seen as 

temporary computational resource, which can be completely 
powered off when not-needed (thanks to power-gating).  

Fig. 2 shows the template of a micro-task architecture 
with an 8-bit data-path; dotted lines represent control 
sig-nals generated by the control FSM whereas solid lines 
repre-sent the data-fl ow connections between the 
various datapath components. 
 
3.3 WSN Node Architecture   

Fig. 3 presents the generic architecture of a node designed 
using micro-tasking. Main entities of the system consist of  
(i) a hardware monitor, (ii) a set of micro-tasks generated by 
our tool, and (iii) some external interfaces to I/O peripherals 
(sensor/actuator or RF-transceiver) that can send events to 
the monitor. Dotted lines represent command signals from 
the monitor to micro-tasks whereas solid lines represent ex-
ternal and internal events signals toward the monitor.  

There are small locally shared memories used by micro-
tasks that can be power-gated once their corresponding 
micro-tasks are shut down. We must emphasize that a 
system -level model (see Section 4.3) is used to specify, 
after a given task firing, which symbols (e.g. arrays) can 
be “killed” and this information is used to turn the shared 
memories on/off. This notion of small power-gated locally 
shared memories, instead of a large global one, will also 
contribute to the overall re-duction in power consumption.  

There is also a very small global memory (based on non-
volatile flash technology) that is used to store the global data 
such as the node-ID, node-address, neighborhood table and 
if there is some potential data to be saved by the micro- 
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Figure 3: A system level architectural view of a node built 
using micro-tasks. 
 
tasks, in case of local memory shut-down. Since an always-ON 

memory can be critical from the point of view of static power 
dissipation, we use a non-volatile flash memory to store the 
needed data and then the whole system can be powered-
gated to achieve virtually zero static power. 
 
3.4 The issue of non-reprogrammability   

As pointed out in the introduction, our approach 
assumes that the micro-tasks are hard-wired into silicon 
as appli-cation specific blocks. As a consequence, post-
production upgrade or bug fixing becomes very difficult. 
This is obvi-ously a very important issue, since flexibility 
is often of a great concern for WSN system designers.  

However, the issue of programmability is often more re-
lated to the application layer which represents a small frac-
tion of processing requirements. Indeed, most of the com-
munication stack functions such as routing algorithms, MAC 
protocols and device drivers remain fi xed. Hence, provid-ing 
programmability in the form of a small foot -print pro-
grammable core would solve the problem while preserving 
most of the power saving (thanks to specialization).  

Besides, there also exist alternative target technologies, 
e.g. Structured ASICs, which offer very low NRE costs, at a price 
of 2 to 5 times decrease in power efficiency. Given that our 
power savings are more than one order of magnitude, this 
approach would still remain extremely competitive.  

The next section covers, in details, the proposed software 
design-flow used to generate the specialized micro-tasks. 
 
4. SOFTWARE DESIGN FLOW   

This section details our proposed software design-flow 
used to generate these customized micro-tasks from an 
applica-tion description written in C. We also highlight 
some fea-tures of a domain specific language (DSL) 
developed for system-level execution model description of 
our proposed WSN node. The generation of a micro-task 
is done auto-matically from a software specification of the 
task behavior in ANSI-C. Our compilation flow is based on 
a generic re-targetable compiler infrastructure.  

We use the intermediate representation (IR) produced by the 

compiler front-end which is in the form of a CDFG (Con-trol and 
Data Flow Graph), in which instructions are rep-resented as 
trees. We then use the retargetable instruction selection 

framework provided by the compiler to map this IR to the 
micro-architecture of each micro-task. 

4.1 Instruction Selection Phase   
An IR usually represents each basic operation (e.g. 

mem-ory fetch or store, addition or subtraction, 
conditional jumps etc.) by a tree node. On the other 
hand, a real machine in-struction often performs several 
of these basic operations at the same time. Finding the 
appropriate mapping of machine instructions to a given 
IR-tree is done through an instruc-tion selection phase.  

Even if there exist more sophisticated approaches for in-
struction selection (e.g. instruction selection of DAG [15]), 
our current implementation uses a simple BURG-based tree-
covering algorithm [10]. The originality of our approach 
comes from the fact that we are not constrained by a pre-
existing instruction-set, and we can therefore use a relatively 
large number of instruction patterns, so as to obtain an ef- 
ficient covering.  

For example, our micro-task uses several relatively 
com-plex instruction patterns involving memory operands 
so as to limit the need for load/store instructions. It also 
uses wordlength specific instructions (byte, word or long 
operand) so as to efficiently use the actual bitwidth of the 
micro-architecture datapath. 
 
4.2 Micro-task Generation   

The machine-specific IR obtained through instruction se-
lection is then transformed into an FSM, in which each in-
struction is mapped to a sequence of micro-code (i.e FSM 
states) used to control the micro-task datapath.  

This transformation stage also involves a wordlength 
con-version step in which instructions operating on 16 -
bit or 32-bit operands may be transformed into 
sequential byte-level microcode in order to match the 
characteristics of the un-derlying micro-task datapath.  

From the set of instruction patterns used in the selection 
phase, we also derive a template of the micro-task datap-
ath, which is trimmed down so as to provide the minimum-
required functionality (types of operators and number of reg-
isters) required to execute the task at hand.  

Our micro-task generation flow is build on top of Eclipse 

Modeling Framework (EMF), a Model -Driven Engineering 

(MDE) framework. More precisely, we formulated a meta-
model for micro- task architecture, and used the facilities 
for code generation provided by the framework to 
generate a synthesizable VHDL description for the micro-
task (FSM + datapath). 
 
4.3 Execution Model Generation   

We also developed a Domain Specific Language (DSL) 
that is used to specify the system-level execution model 
of a WSN node. Due to space limitation, detailing the 
features and development of this model is out of scope 
for this paper, however for the sake of completeness, we 
outline its main characteristics.  

A system-level execution model consists of the micro- 
tasks of a node and the events that will be generated and 
con-sumed by the micro-tasks upon their termination and 
ac-tivation respectively. The DSL was developed using 
Xtext (another MDE framework) and generates a VHDL 
descrip-tion for the monitor.  

Fig. 4 shows the complete design-flow for micro-task-
based node generation: it starts from the application 
description modeled as a task graph using the DSL, each 
task written in C, and goes till the integrated circuit (IC) 
generation for the node. 
 
5. EXPERIMENTAL VALIDATION  
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This section by briefly discusses the WSN benchmarks 
and OS tasks used for design space exploration and 
micro-task generation and later on, analyzes the 
experimental results and corresponding power savings. 
 
5.1 WSN Benchmarks and OS Tasks   

Several attempts have been proposed to profile the work-
load of a generic WSN node. Two of the recent applica-tion 
benchmarks for WSN are SenseBench [18] and WiSeN-
Bench [17], from which we extracted most of our examples. 
To cover the OS-task aspect, we also used several of the 
OS-related control-tasks such as a simplified next-node cal-
culation function used in multi-hop geographical routing al-
gorithm (similar to that was used by PowWow (an open-
source WSN platform [13]), and the drivers used to ex-
change data with the SPI-interface of RF transceiver such as 
CC2420. All of the above application/OS tasks provide a 
comprehensive database from real-life WSN applications 
mostly used by WSN programmers.  
5.2 Design Space Exploration   

We used the proposed software design-flow to 
generate micro-tasks having both 8- and 16-bit 
datapaths to monitor the power savings as compared to 
commercial MCUs such as the MSP430.  

We synthesized the datapaths that have optimized de-
sign parameters for different micro-tasks extracted from 
the above benchmarks. The synthesis was performed for 
130 nm CMOS technology using Synopsys’s Design 
Compiler and the power and area estimations are given in 
Table 2. 

 

 Bit Register RAM ROM ALU Power Area  
 

  File   forFnsdatapaths.(μW) (μm
2
 ) 

 
TableWidth2: Power consumptionDepthDepth having  

  Depth        
 

 
different design parameters (@ 16 MHz).   

 
    

 8 4 4 4 8 57  7635  
 

 

          

8 8 0 8 6 49.7  7038  
 

 

          

8 16 0 2 4 69  11163  
 

 

          

8 4 2 2 2 42  6160  
 

           

 8 16 2 4 6 93  13098  
 

 

          

16 8 0 4 6 99  13184  
 

 

          

16 4 4 4 8 116  14423  
 

 

          

16 16 0 2 4 139.5  21590  
 

           

 16 4 2 2 2 88  11715  
 

           

 
5.2.1 Power Savings w.r.t. Conventional MCU   

The VHDL designs for complete micro-tasks have also been 
synthesized for 130 nm CMOS technology. We used these 
synthesis results to extract gate-level static and dy-namic 
power estimations (@ 16 MHz). These results were compared 
to the power dissipated by (i) an MSP430F21x2 using the 
datasheet information (8.8 mW @ 16 MHz in ac-tive mode; 
cf. Table 1) which includes memory, peripherals and (ii) an 
open-source MSP430 processor core (0.96 mW @ 
16 MHz), without program memory and peripherals.  

We expect the actual power dissipation of the MSP430 
core and its program memory to lie somewhere between the 
two results, and did a comparison to both of them.  

The results are given in Table 3 where columns 2 through 
6 show the instruction and cycle count, time taken, power 
and energy consumption for the two MSP430 MCUs (for the 
corresponding software implementation). On the other hand, 
columns 7 through 13 show the power and energy ben-efits 
for 8-bit micro-tasks. Similarly, columns 14 through 20 
summarize the results for 16-bit micro-tasks. It can be ob-
served that, for micro-tasks of different benchmark applica-
tions and OS tasks, power and energy benefits between one 
to two orders of magnitude can be obtained. 
 
5.2.2 Optimum Bitwidth for Micro-tasks   

We generated the micro-tasks for application codes 
hav-ing a variety of wordlengths operations. For example, 
the application crc16 mostly uses 16-bit wordlength 
operations while operations in tea-decipher and tea-encipher 

mostly in-volve 32-bit wordlength data. The rest of the 
applications under-test use 8-bit wordlength operations.  

As expected, for application codes, having wordlengths 
greater than 8-bit, an 8- bit micro-task has twice the 
num-ber of FSM states than a 16-bit micro-task. 
However, in-terestingly the FSM of a micro-task 
consumes much lesser power than the datapath and 
power consumption of even very large FSMs increases in 
a sub-linear fashion with the number of states (Fig. 5).  

As a result, an 8-bit micro-task consumes nearly half 
the power and silicon area than a 16-bit micro-task, Fig. 
6(a) and (b). As far as the energy consumption is 
concerned, for codes having wordlengths greater than 8-
bit, total energy consumption of an 8-bit and 16-bit 
micro-task is nearly the same. On the other hand, for 
application codes having 8-bit wordlength, an 8-bit micro-
task consumes half of that of a 
16-bit micro-task, Fig. 6(c).  

Hence, since the datapath’s power dominates the FSM’s 
power in our examples, an 8-bit micro-task is a better so-
lution. Nevertheless, for cases where FSMs could be com-
paratively much larger and consume more power than the 
datapath, micro-tasks having larger bitwidth would become 
more suitable. 
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Table 3: Power/energy gains for micro-tasks of various benchmark applications and OS tasks (@ 16 MHz). 

Task 
  MSP430    8-bit Micro -task     16-bit Micro-task  

 

Instr. Clk time Power Energy No. time Power Energy P. Gain E. Gain Area No. time Power Energy P. Gain E. Gain Area 
 

Name Count Cycles (μs) (mW) (nJ) States (μs) (μW) (pJ) (x) (x) (μm
2
 ) States (μs) (μW) (pJ) (x) (x)  (μm

2
 ) 

 

crc8 30 81 5.1 8.8/0.96 45/4.9 71 4.4 56.7 249 180/16.9143/19.6 8864 71 4.4 106.7 469 82.4/9 95/10.5 16049 
 

crc16 27 77 4.8 8.8/0.96 42.2/4.6 103 6.4 57.4 369 153/16.7114/12.5 9523 73 4.56 106.4 485 82.7/9 91/9.5 16135 
 

tea-decipher 152 441 27.58.8/0.96242/26.4 586 36.6 84.5 3090 104/11.4 78/8.5 19950 308 19.2 152.8 2940 57.6/6.3 82/9 27236 
 

tea-encipher 149 433 27.08.8/0.96 238/26 580 36.2 87.3 3160 101/11 75/8.2 20248 306 19.1 152.3 2910 57.8/6.3 81/8.9 27069 
 

fir 58 175 10.98.8/0.96 96/10.4 165 10.3 78.2 806 112/12.3119/12.914548 168 10.5 148.7 1560 59/6.5 61/6.7 24975 
 

calcNeigh 110 324 20.28.8/0.96178/19.4 269 16.8 81.4 1370 108/11.8130/14.216873 269 16.8 151 2540 58/6.4 70/7.6 27320 
 

snd2SPI 132 506 31.68.8/0.96278/30.3 672 42 89 3730 99/10.8 74.5/8.1 23351 672 42 159.5 6700 55/6 41/4.5 33778 
 

rcvFromSPI 66 255 15.98.8/0.96140/15.2 332 20.7 81.5 1690 108/11.8 82.8/9 17487 332 20.7 151 3130 58.2/6.444.6/4.8 27934 
 

 
 
 
 
 
 
 
 
 

 

Figure 6: Comparison of power, area and energy consumption for 8- and 16-bit micro-tasks. 
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Figure 5: Power consumption vs. number of states of a 
micro-task FSM. 
 
6. CONCLUSION   

In this paper, we have proposed, a novel approach for 
ultra low-power implementation of control-oriented appli-
cation tasks of a WSN node. Our approach is based on 
power-gated micro-tasks that are implemented as 
specialized hardware blocks. We presented the details of 
our proposed software design-flow in VHDL code.  

We presented the design space exploration results for dif-

ferent datapaths optimized for the corresponding applica-tions at 

hand. We also presented the power dissipation re-sults found for 

di ff erent micro-tasks generated from WSN application 

benchmarks and OS-specific control-tasks. The synthesis results 

show that, compared with the MSP430 micro-controller and 

under a conservative assumption, power reductions by one to 

two orders of magnitude are possible.  
In future, we would also like to explore the feasibility 

of adding a small power-efficient reconfigurable core to 
the proposed node in order to provide reprogrammability. 
We would also like to further customize the micro-tasks 
for bet-ter power and area utilization. For example, 
finding pat-terns in FSM and developing more specialized 
operators in datapath could be interesting for an overall 
area and power reduction. 
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