
Volume III, Issue IA, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 86

 An Alternate Design for Wireless Sensor

Network Node Processor

Priyanka Sao

Gyan Vihar School of Engineering and
Technology ,SGVU, Jaipur,

Rajasthan,India

priyankasao2010@gmail.com

ABSTRACT
Wireless Sensor Networks (WSN) are a new and very
challenging research field for embedded system design
automation, as their design must enforce stringent
constraints in terms of power and cost. WSN node
devices have until now been designed using off-the-
shelf low-power microcontroller units (MCUs), even if
their power dissipation is still an issue and hinders the
wide-spreading of this new technology. In this paper,
we propose a new architectural model for WSN nodes
(and its complete design-flow in synthesizable VHDL).
Our approach combines hardware specialization and
dividing the ALU operation in MSB and LSB unit
operations at the same clock cycle thereby reducing
the latency of processor and also a low-power solution
for WSN node processor design.

General Terms
Design, Experimentation, Performance
Keywords
Hardware Specialization, Low-Power Design, WSN Node
1. INTRODUCTION

Wireless Sensor Network (WSN) is a fast

evolving tech- nology having a number of
potential applications in various domains of
daily-life, such as structural and
environmental monitoring, medicine, military
surveillance, robotic explo- rations etc. A WSN
is composed of a large number of sen - sor
nodes that are usually deployed either inside a
region of interest or very close to it. WSN
nodes are low-power embedded devices
consisting of processing and storage com-
ponents (a processor connected to a RAM
and/or flash mem- ory) combined with
wireless communication capabilities (RF
transceiver) and some sensors/actuators.
Designing a WSN node is a daunting task,
since the de-signers must deal with many
stringent design constraints. For example,
because these nodes must have small form-
factors and limited production cost, it is not
possible to pro-vide them with significant
power sources [23].

their energy consumption is often the most crit-ical
design parameter.

As far as their design is concerned, WSN nodes have
until now been based on low-power MCUs such as
MSP430 [22] and ATmega128L [3]. These programmable
processors pro-vide a reasonable processing power with
low power consump-tion at a very affordable cost. Most
of such MCU-packages also offer a limited amount of RAM
(from a few hundred Bytes to a few kilo-Bytes) and non-
volatile flash memory.

However, these processors are designed for low-power
op-eration across a range of embedded system
application set-tings. As a consequence, they are not
necessarily well-suited to WSN node as they are based on
a general purpose, mono-lithic compute engine. On the
software end, WSN nodes generally rely on a light -
weight Operating System (OS) layer to provide
concurrency management for both external event
handling and/or application task management.

Eventually, power dissipation of current low-power
MCUs still remains orders of magnitude too high for many
poten-tial applications of WSN. We believe that the
hardware spe-cialization is an interesting way to further
improve energy efficiency: instead of running the
application/OS tasks on a programmable processor, we
propose to generate an ap-plication specific micro-
architecture, tailored to each task of the application at
hand.

We propose such an approach where a WSN node
archi-tecture is made of several micro- tasks that are
activated on an event-driven basis, each of them being
dedicated to a specific task of the system (such as event-
sensing, low-power MAC, routing, and data processing
etc.). By com- bining hardware specialization with power
reduction tech- niques such as power -gating, we can
drastically reduce both dynamic (thanks to specialization)
and static power (thanks to power-gating). The impact of
the induced loss of flexibil- ity is discussed in Section 3.

The contributions of this work are two-fold:

• We provide an integrated system-level design-flow
for micro-task-based WSN architectures. In this
flow, the behavior of each micro-task is specified in
C and is mapped to an application specific micro-
architecture using a modified version of a
retargetable compiler in-

Volume III, Issue IA, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 87

frastructure.

• We use this flow to perform design space
exploration by exploring the trade-off in power/area
that can be obtained by modifying the bitwidth of
the generated micro-tasks, and compare the
obtained results to those achieved by using an off-
the-shelf low-power MCU such as the MSP430.

In particular, our experiments show that dynamic power
sav-ings by one to two orders of magnitude can be
obtained for different control-oriented tasks of a WSN
application (w.r.t. the MSP430). Besides, the static power
profile of our ar-chitectural model also remains very low
(thanks to power-gating).

The rest of this paper is organized as follows. We start
by presenting the related work in Section 2 and highlight
our proposed system-model and notion of micro-task in
Section 3. Section 4, thoroughly covers our complete
design-flow and in Section 5, we present experimental
results for design space exploration and corresponding
power benefits. Finally, we conclude and draw future
research directions in Section 6.
2. RELATED WORK

As mentioned in the introduction, power efficiency is one of
the most important design parameter for WSN nodes, and
consequently a lot of efforts have been made to propose
energy efficient implementations of such devices.

To design an energy-aware WSN node, it is mandatory to
analyze its power dissipation characteristics. A canoni-cal
WSN node consists of four subsystems: i) a computing
subsystem having an MCU, ii) a communication subsystem
having RF transceiver, iii) a sensing subsystem having the
sensor/actuator interfaces and iv) a power Supply subsys-
tem. Among them, communication and computation sub-
systems consume bulk of the power-budget [20, 7], and it is
generally accepted that e ff orts toward energy reduction
should target both of them in particular.

As far as reduction in communication energy is concerned,
there have been a lot of efforts put on the communication-
stack energy optimization and low power RF technology, in-
cluding energy-efficient routing algorithms, low-power MAC
protocols, efficient error correction codes and power-aware
transmission techniques (See [1] for a survey).

On the other hand, low-power micro-architectures and
more specifically operating systems (OS) [6, 19] (customized
to the WSN domain) have received a great deal of attention
in the last few years. Even though an exhaustive survey is
out of the scope of this work, we will highlight some of the
most significant contributions in this domain.
2.1 WSN-related OS

Task, power and device management are some of the core
features of a typical WSN OS. TinyOS [19] is one of the
earliest and the most commonly used OS in WSN. It pro-
vides a component-based event-driven concurrency model
without explicit thread management. Contiki [6] is another
frequently used WSN OS that proposes a simplified thread
execution model (named protothread), in which preemption

can only occur at specific points in the Task Control Flow.
TinyOS and Contiki have a memory foot-print of around 1 kB
and 4 kB respectively, and hence require a significant amount
of memory for their operation. Our approach is dif-ferent
since it allows multiple micro-tasks to run in parallel, each
one having its own dedicated processing resource.
2.2 Power Analysis of WSN MCUs

As far as low-power micro-controllers (e.g. MSP430 and
ATmega128L) are concerned, they share many characteris-

Table 1: Actual and normalized power consumption for
various low-power MCUs.

WSN Normalized Actual
MCU Power Power

ATmega103L[2] 66 mW (@ 16 MHz) 5.5 mA (@ 4 MHz, 3.0V)

ATmega128L[5, 7] 48 mW (@ 16 MHz) 8 mA (@ 8 MHz, 3.0V)

MSP430F1611[9] 24 mW (@ 16 MHz) 500 μA (@ 1 MHz, 3.0V)
MSP430F21x2[22] 8.8 mW (@ 16 MHz) 250 μA (@ 1 MHz, 2.2V)

tics: a simple datapath (8/16-bit wide), a reduced
number of instructions (only 27 instructions for the
MSP430), and several power saving modes which allow
the system to select at runtime the best compromise
between power saving and reactivity (i.e. wake up time).

Most of the current WSN nodes are built on these com-
mercial MCUs. For example, Mica2 mote [5] has been widely
used by the research community and is based on Atmel’s AT-
mega128L. The same MCU has also been used by the design-
ers of the eXtreme Scale Mote (XSM) [7]. The Hydrowatch
platform is built on the MSP430F1611 whereas Texas In-
struments has launched a series of MCUs, MSP430F21x2,
which is specialized for WSN nodes [22]. Table 1 summa-
rizes power consumptions of these MCUs at a normalized
frequency of 16 MHz along with the actual consumptions
present in the literature.

It is an acknowledged fact that the power budget of a WSN
node that would rely only on energy harvesting technolo-gies
is estimated to be around 100 μW [21]. Comparing this

constraint with that of current MCUs power consumption
profiles clearly drives us toward alternative architectural so-
lutions (e.g. hardware specialization of the system).
2.3 Power Efficient Hardware Synthesis

High-Level Synthesis and retargetable compiler for ASIP
(Application Specific Instruction Set Processor) have been a
very active research domain for the last 15 years. Even if
there are still many open research issues; there now exist
several mature academic/commercial tools (e.g. XPilot [14],
Spark [12], NISC [4, 11], Catapult-C from Mentor Graphics,
Impulse-C, etc.) that are capable of producing specialized
hardware description from software specification in C/C++.

Interestingly, all these tools share a common characteris-
tic: they generally see hardware specialization as a mean to
improve performance over a standard software imple-
mentation. This performance improvement however often
comes at the price of an increased area cost (co -processor
or instruction -set extension requires additional area). Of
course, these specializations also have a significa nt impact
on power efficiency, since they allow for a drastic reduction
of dynamic power of the system.

Indeed, except from Fin et al. [8] and L’Hours et al. [16],
very few papers have addressed the problem of using pro-
cessor specialization as a mean to reduce silicon footprint.
We believe that in the context of WSN node architecture,
where silicon area and ultra low-power are the two main
design issues, such an approach deserves attention.

The following section presents an original approach which
builds on this idea. More specifically, we propose a new ar-
chitectural model (along with a complete system-level
downto gate-level design-flow) for WSN nodes design, based
on the notion of concurrent power-gated hardware micro-tasks.
3. PROPOSED APPROACH

WSN applications, being event- driven in nature, can be
represented as Tasks Flow Graphs (TFG) where a task ex-
ecution is triggered by events, be they external or produced by
another task. Fig.1 shows the TFG of a temperature-sensing
application which periodically senses the tempera-

Volume III, Issue IA, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 88

 start powerOn()

HT0

ext. event HT1

 shutDown()

HT7
genTemp() HT2

 time_OutA

 calcNeigh()

sendData()
HT3

HT6 time_OutB

ack_OK HT4

HT5 sendBeacon()

receiveAck()

Figure 1: A task flow graph (TFG) presenting the micro-
tasks running on a temperature-sensing node.

ture and may then send a message to its base station
depend-ing on the observed value. This application involves
many tasks: updating neighboring nodes information (for
multi-hop routing), sending beacons to them for starting the
data transmission, waiting for their acknowledgment, etc.

All these control-oriented tasks are spread across differ-ent
layers of the communication stack and involve further sub-
tasks associated to them. For instance, calculating the next
node in a multi-hop system involves an efficient rout-ing
algorithm that is an integral part of network layer of the
communication stack. Similarly, sending beacon and data
packets involve physical layer functions that exchange data
between I/O peripherals of MCU and RF transceiver using
SPI-protocol. In typical WSN node, such tasks are handled by
an MCU and corresponding OS that provides support for
multi-tasking features.

In our approach, we propose to implement each of these
concurrent tasks in the form of a set of customized hardware
micro-tasks so as to drastically reduce its power dissipation
thanks to specialization.

In this section, we briefly discuss our proposed system-
level execution model and power-gating technique. Subse-
quently, we introduce the notion of micro- task and highlight
the architecture of a WSN node based on micro-tasking.

3.1 System-level Execution Model

Our proposed node is based on an event -centric
concur- rency model where a hardware monitor turns-
on/off each micro-task upon receiving a specific event or
a set of events with the help of power-gating technique.

Power-gating is a well-known VLSI circuit-level technique
used to reduce both dynamic and static power. It
consists in adding a sleep transistor between the actual
Vdd (power supply) rail and the component’s Vdd , thus
creating a virtual supply voltage called V vdd as illustrated
in Fig. 2. Sleep transistor allows the supply voltage of
the block to be cut off to dramatically reduce leakage
currents. It is different than clock-gating which only reduces
the dynamic power of the circuit.

The basic goal of proposed execution model is to achieve
an ultra low-power system with a simpler task-management
strategy that best-suits our micro-task-based system archi-
tecture. The monitor is an FSM that will commence its
execution when certain starting conditions are met and will
run to finish. During each execution state, micro-tasks may
be activated or deactivated according to events received by
the monitor. To simplify the matter, we restrict ourselves to
such multi-tasking system in which a micro-task can not be
interrupted and runs to completion.

The monitor also ensures that no two micro-tasks having a
shared -storage or I/O- resource are active simultaneously at
a given time instant. This mutual-exclusiveness allows

Vdd
en_MT

 Vvdd

(C
aculated)A

ddressR
am

ra
m

D
a
t

a
In

8
P

eriph

eralsI/O

Register

micro-task

 File rfDataOut

 RAM
ramDataOut 8

 8

2 romDataOut

.A
d
rB

O
p
e
ra

n
d

8

S
e
le

c
tio

n
In

p
u
t

R
a
m

ROM

Arithmetic

S
e

le
c
ti

o
n

In
p
u
tA

lu

 Logic Unit

 (ALU)

S
electO

peran
dA

lu

 8 Alu Result

 Rom Address

.AdrAOperand

3
2

 CTRL. FSM

 Ram Address Pheripheral On/Off

 (Generated)

Figure 2:

 Architecture of a generic micro-task.

a drastic simplification of access control logic of shared re-
sources resulting in a more efficient design in terms of area
and power. In fact, there will be no need for tri-state or
multiplexer logic at shared resource interfaces in our model.
3.2 Notion of Micro-task

Each task of a TFG can be mapped onto a specialized
hardware structure called a micro-task. This hardware can
be seen as a small MCU datapath micro-architecture,
driven by a control FSM that sequence/executes the
micro-code corresponding to the task at hand. It can
access some shared memories, and can be directly
connected to some of the peripheral I/O ports.

At first glance, our approach may seem similar to the
pro-cessor specialization of Gorjiara et al. [4] however,
there are two significant differences. First, our main goal
is to min-imize the silicon footprint of the resulting micro-
task, im-proving performance is only a secondary
objective. Second, our micro -tasks should be seen as

temporary computational resource, which can be completely
powered off when not-needed (thanks to power-gating).

Fig. 2 shows the template of a micro-task architecture
with an 8-bit data-path; dotted lines represent control
sig-nals generated by the control FSM whereas solid lines
repre-sent the data-fl ow connections between the
various datapath components.

3.3 WSN Node Architecture

Fig. 3 presents the generic architecture of a node designed
using micro-tasking. Main entities of the system consist of
(i) a hardware monitor, (ii) a set of micro-tasks generated by
our tool, and (iii) some external interfaces to I/O peripherals
(sensor/actuator or RF-transceiver) that can send events to
the monitor. Dotted lines represent command signals from
the monitor to micro-tasks whereas solid lines represent ex-
ternal and internal events signals toward the monitor.

There are small locally shared memories used by micro-
tasks that can be power-gated once their corresponding
micro-tasks are shut down. We must emphasize that a
system -level model (see Section 4.3) is used to specify,
after a given task firing, which symbols (e.g. arrays) can
be “killed” and this information is used to turn the shared
memories on/off. This notion of small power-gated locally
shared memories, instead of a large global one, will also
contribute to the overall re-duction in power consumption.

There is also a very small global memory (based on non-
volatile flash technology) that is used to store the global data
such as the node-ID, node-address, neighborhood table and
if there is some potential data to be saved by the micro-

Volume III, Issue IA, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 89

Sensor P

o
rtI/O

E
v
e
n
t.E

x

E
v
e

n
t.Ex

P
o

rtI/O

Radio chip

(e.g. : heat) (e.g. : CC2420)

 B

A

Monitor

AEn_ A
M

E
M

E
n

BEn_

CEn_

B
M

E
M

E
n

DEn_

Vdd Vdd Vdd Vdd
 AE

vent.Int

BE
ve

nt.Int

CEvent.Int

D
E

ven

t.Int

Micro-task Micro-task Micro-task Micro-task

A Vdd B C Vdd D

 Local Flash Local

Memory A’ Memory G Memory B’

Figure 3: A system level architectural view of a node built
using micro-tasks.

tasks, in case of local memory shut-down. Since an always-ON

memory can be critical from the point of view of static power
dissipation, we use a non-volatile flash memory to store the
needed data and then the whole system can be powered-
gated to achieve virtually zero static power.

3.4 The issue of non-reprogrammability

As pointed out in the introduction, our approach
assumes that the micro-tasks are hard-wired into silicon
as appli-cation specific blocks. As a consequence, post-
production upgrade or bug fixing becomes very difficult.
This is obvi-ously a very important issue, since flexibility
is often of a great concern for WSN system designers.

However, the issue of programmability is often more re-
lated to the application layer which represents a small frac-
tion of processing requirements. Indeed, most of the com-
munication stack functions such as routing algorithms, MAC
protocols and device drivers remain fi xed. Hence, provid-ing
programmability in the form of a small foot -print pro-
grammable core would solve the problem while preserving
most of the power saving (thanks to specialization).

Besides, there also exist alternative target technologies,
e.g. Structured ASICs, which offer very low NRE costs, at a price
of 2 to 5 times decrease in power efficiency. Given that our
power savings are more than one order of magnitude, this
approach would still remain extremely competitive.

The next section covers, in details, the proposed software
design-flow used to generate the specialized micro-tasks.

4. SOFTWARE DESIGN FLOW

This section details our proposed software design-flow
used to generate these customized micro-tasks from an
applica-tion description written in C. We also highlight
some fea-tures of a domain specific language (DSL)
developed for system-level execution model description of
our proposed WSN node. The generation of a micro-task
is done auto-matically from a software specification of the
task behavior in ANSI-C. Our compilation flow is based on
a generic re-targetable compiler infrastructure.

We use the intermediate representation (IR) produced by the

compiler front-end which is in the form of a CDFG (Con-trol and
Data Flow Graph), in which instructions are rep-resented as
trees. We then use the retargetable instruction selection

framework provided by the compiler to map this IR to the
micro-architecture of each micro-task.

4.1 Instruction Selection Phase
An IR usually represents each basic operation (e.g.

mem-ory fetch or store, addition or subtraction,
conditional jumps etc.) by a tree node. On the other
hand, a real machine in-struction often performs several
of these basic operations at the same time. Finding the
appropriate mapping of machine instructions to a given
IR-tree is done through an instruc-tion selection phase.

Even if there exist more sophisticated approaches for in-
struction selection (e.g. instruction selection of DAG [15]),
our current implementation uses a simple BURG-based tree-
covering algorithm [10]. The originality of our approach
comes from the fact that we are not constrained by a pre-
existing instruction-set, and we can therefore use a relatively
large number of instruction patterns, so as to obtain an ef-
ficient covering.

For example, our micro-task uses several relatively
com-plex instruction patterns involving memory operands
so as to limit the need for load/store instructions. It also
uses wordlength specific instructions (byte, word or long
operand) so as to efficiently use the actual bitwidth of the
micro-architecture datapath.

4.2 Micro-task Generation

The machine-specific IR obtained through instruction se-
lection is then transformed into an FSM, in which each in-
struction is mapped to a sequence of micro-code (i.e FSM
states) used to control the micro-task datapath.

This transformation stage also involves a wordlength
con-version step in which instructions operating on 16 -
bit or 32-bit operands may be transformed into
sequential byte-level microcode in order to match the
characteristics of the un-derlying micro-task datapath.

From the set of instruction patterns used in the selection
phase, we also derive a template of the micro-task datap-
ath, which is trimmed down so as to provide the minimum-
required functionality (types of operators and number of reg-
isters) required to execute the task at hand.

Our micro-task generation flow is build on top of Eclipse

Modeling Framework (EMF), a Model -Driven Engineering

(MDE) framework. More precisely, we formulated a meta-
model for micro- task architecture, and used the facilities
for code generation provided by the framework to
generate a synthesizable VHDL description for the micro-
task (FSM + datapath).

4.3 Execution Model Generation

We also developed a Domain Specific Language (DSL)
that is used to specify the system-level execution model
of a WSN node. Due to space limitation, detailing the
features and development of this model is out of scope
for this paper, however for the sake of completeness, we
outline its main characteristics.

A system-level execution model consists of the micro-
tasks of a node and the events that will be generated and
con-sumed by the micro-tasks upon their termination and
ac-tivation respectively. The DSL was developed using
Xtext (another MDE framework) and generates a VHDL
descrip-tion for the monitor.

Fig. 4 shows the complete design-flow for micro-task-
based node generation: it starts from the application
description modeled as a task graph using the DSL, each
task written in C, and goes till the integrated circuit (IC)
generation for the node.

5. EXPERIMENTAL VALIDATION

Volume III, Issue IA, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 90

 Application

 Task Flow Graph

 Software Tasks (TFG)

 Task

.c .c .c Task B

Task C Task B Task A A

Task.c

GeCoS Design Task

C

 Flow

C Front-End

Retargetable Custom
DSL for

Instruction Selector Datapath

System-Model

(BURG)

Model

 Generation

FSM Datapath

Builder Builder

FSM.vhd Datapath.vhd

 .vhd

 Hardware Micro-Tasks

 .vhd .vhd .vhd
Monitor

 Micro-task C

Micro-task
B Micro-task A

Hardware Synthesis Tool

Final IC
Figure 4: Software design flow for the IC generation

This section by briefly discusses the WSN benchmarks
and OS tasks used for design space exploration and
micro-task generation and later on, analyzes the
experimental results and corresponding power savings.

5.1 WSN Benchmarks and OS Tasks

Several attempts have been proposed to profile the work-
load of a generic WSN node. Two of the recent applica-tion
benchmarks for WSN are SenseBench [18] and WiSeN-
Bench [17], from which we extracted most of our examples.
To cover the OS-task aspect, we also used several of the
OS-related control-tasks such as a simplified next-node cal-
culation function used in multi-hop geographical routing al-
gorithm (similar to that was used by PowWow (an open-
source WSN platform [13]), and the drivers used to ex-
change data with the SPI-interface of RF transceiver such as
CC2420. All of the above application/OS tasks provide a
comprehensive database from real-life WSN applications
mostly used by WSN programmers.
5.2 Design Space Exploration

We used the proposed software design-flow to
generate micro-tasks having both 8- and 16-bit
datapaths to monitor the power savings as compared to
commercial MCUs such as the MSP430.

We synthesized the datapaths that have optimized de-
sign parameters for different micro-tasks extracted from
the above benchmarks. The synthesis was performed for
130 nm CMOS technology using Synopsys’s Design
Compiler and the power and area estimations are given in
Table 2.

 Bit Register RAM ROM ALU Power Area

 File forFnsdatapaths.(μW) (μm
2
)

TableWidth2: Power consumptionDepthDepth having

 Depth

different design parameters (@ 16 MHz).

 8 4 4 4 8 57 7635

8 8 0 8 6 49.7 7038

8 16 0 2 4 69 11163

8 4 2 2 2 42 6160

 8 16 2 4 6 93 13098

16 8 0 4 6 99 13184

16 4 4 4 8 116 14423

16 16 0 2 4 139.5 21590

 16 4 2 2 2 88 11715

5.2.1 Power Savings w.r.t. Conventional MCU

The VHDL designs for complete micro-tasks have also been
synthesized for 130 nm CMOS technology. We used these
synthesis results to extract gate-level static and dy-namic
power estimations (@ 16 MHz). These results were compared
to the power dissipated by (i) an MSP430F21x2 using the
datasheet information (8.8 mW @ 16 MHz in ac-tive mode;
cf. Table 1) which includes memory, peripherals and (ii) an
open-source MSP430 processor core (0.96 mW @
16 MHz), without program memory and peripherals.

We expect the actual power dissipation of the MSP430
core and its program memory to lie somewhere between the
two results, and did a comparison to both of them.

The results are given in Table 3 where columns 2 through
6 show the instruction and cycle count, time taken, power
and energy consumption for the two MSP430 MCUs (for the
corresponding software implementation). On the other hand,
columns 7 through 13 show the power and energy ben-efits
for 8-bit micro-tasks. Similarly, columns 14 through 20
summarize the results for 16-bit micro-tasks. It can be ob-
served that, for micro-tasks of different benchmark applica-
tions and OS tasks, power and energy benefits between one
to two orders of magnitude can be obtained.

5.2.2 Optimum Bitwidth for Micro-tasks

We generated the micro-tasks for application codes
hav-ing a variety of wordlengths operations. For example,
the application crc16 mostly uses 16-bit wordlength
operations while operations in tea-decipher and tea-encipher

mostly in-volve 32-bit wordlength data. The rest of the
applications under-test use 8-bit wordlength operations.

As expected, for application codes, having wordlengths
greater than 8-bit, an 8- bit micro-task has twice the
num-ber of FSM states than a 16-bit micro-task.
However, in-terestingly the FSM of a micro-task
consumes much lesser power than the datapath and
power consumption of even very large FSMs increases in
a sub-linear fashion with the number of states (Fig. 5).

As a result, an 8-bit micro-task consumes nearly half
the power and silicon area than a 16-bit micro-task, Fig.
6(a) and (b). As far as the energy consumption is
concerned, for codes having wordlengths greater than 8-
bit, total energy consumption of an 8-bit and 16-bit
micro-task is nearly the same. On the other hand, for
application codes having 8-bit wordlength, an 8-bit micro-
task consumes half of that of a
16-bit micro-task, Fig. 6(c).

Hence, since the datapath’s power dominates the FSM’s
power in our examples, an 8-bit micro-task is a better so-
lution. Nevertheless, for cases where FSMs could be com-
paratively much larger and consume more power than the
datapath, micro-tasks having larger bitwidth would become
more suitable.

Volume III, Issue IA, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 91

Table 3: Power/energy gains for micro-tasks of various benchmark applications and OS tasks (@ 16 MHz).

Task
 MSP430 8-bit Micro -task 16-bit Micro-task

Instr. Clk time Power Energy No. time Power Energy P. Gain E. Gain Area No. time Power Energy P. Gain E. Gain Area

Name Count Cycles (μs) (mW) (nJ) States (μs) (μW) (pJ) (x) (x) (μm
2
) States (μs) (μW) (pJ) (x) (x) (μm

2
)

crc8 30 81 5.1 8.8/0.96 45/4.9 71 4.4 56.7 249 180/16.9143/19.6 8864 71 4.4 106.7 469 82.4/9 95/10.5 16049

crc16 27 77 4.8 8.8/0.96 42.2/4.6 103 6.4 57.4 369 153/16.7114/12.5 9523 73 4.56 106.4 485 82.7/9 91/9.5 16135

tea-decipher 152 441 27.58.8/0.96242/26.4 586 36.6 84.5 3090 104/11.4 78/8.5 19950 308 19.2 152.8 2940 57.6/6.3 82/9 27236

tea-encipher 149 433 27.08.8/0.96 238/26 580 36.2 87.3 3160 101/11 75/8.2 20248 306 19.1 152.3 2910 57.8/6.3 81/8.9 27069

fir 58 175 10.98.8/0.96 96/10.4 165 10.3 78.2 806 112/12.3119/12.914548 168 10.5 148.7 1560 59/6.5 61/6.7 24975

calcNeigh 110 324 20.28.8/0.96178/19.4 269 16.8 81.4 1370 108/11.8130/14.216873 269 16.8 151 2540 58/6.4 70/7.6 27320

snd2SPI 132 506 31.68.8/0.96278/30.3 672 42 89 3730 99/10.8 74.5/8.1 23351 672 42 159.5 6700 55/6 41/4.5 33778

rcvFromSPI 66 255 15.98.8/0.96140/15.2 332 20.7 81.5 1690 108/11.8 82.8/9 17487 332 20.7 151 3130 58.2/6.444.6/4.8 27934

Figure 6: Comparison of power, area and energy consumption for 8- and 16-bit micro-tasks.

w
a
tt
s
) 40

30

(m
ic

ro

20

10

P
o
w

e
r

00 200 400 600 800 1000 1200 1400 1600 1800

 Number of FSM States

Figure 5: Power consumption vs. number of states of a
micro-task FSM.

6. CONCLUSION

In this paper, we have proposed, a novel approach for
ultra low-power implementation of control-oriented appli-
cation tasks of a WSN node. Our approach is based on
power-gated micro-tasks that are implemented as
specialized hardware blocks. We presented the details of
our proposed software design-flow in VHDL code.

We presented the design space exploration results for dif-

ferent datapaths optimized for the corresponding applica-tions at

hand. We also presented the power dissipation re-sults found for

di ff erent micro-tasks generated from WSN application

benchmarks and OS-specific control-tasks. The synthesis results

show that, compared with the MSP430 micro-controller and

under a conservative assumption, power reductions by one to

two orders of magnitude are possible.
In future, we would also like to explore the feasibility

of adding a small power-efficient reconfigurable core to
the proposed node in order to provide reprogrammability.
We would also like to further customize the micro-tasks
for bet-ter power and area utilization. For example,
finding pat-terns in FSM and developing more specialized
operators in datapath could be interesting for an overall
area and power reduction.

7. REFERENCES
[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.

Wireless Sensor Networks:A Survey. Computer Networks,

38(4), March 2002.

[2] Atmel Corporation. ATmega 103L 8-bit AVR Low-

Power Microcontroller. Tech. Report, 2007.

[3] Atmel Corporation. ATmega 128L 8-bit AVR Low-Power

MCU. Tech. Report, 2009.

[4] B. Gorjiara and D. Gajski. Automatic Architecture Refinement

Techniques for Customizing Processing Elements. In DAC’08.

[5] Crossbow Technology. Mica2 motes, http://www.xbow.com/.

[6] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A Lightweight

and Flexible Operating System for Tiny Networked Sensors. in

LCN’04, Nov. 2004.

[7] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler.

Design of a Wireless Sensor Network Platform for Detecting

Rare, Random, and Ephemeral Events. In Proceedings of IPSN

’05, NJ, USA, 2005.

[8] A. Fin, F. Fummi, and G. Perbellini. Soft-Cores Generation by

Instruction Set Analysis. In Proceedings of ISSS ’01, 2001.

[9] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto: Tracking

Energy in Networked Embedded Systems. In OSDI’08, 2008.

[10] C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG: Fast

Optimal Instruction Selection and Tree Parsing. SIGPLAN Not.,

27(4), 1992.

[11] B. Gorjiara, M. Reshadi, and D. Gajski. Generic Architecture

Description for Retargetable Compilation and Synthesis of

Application-Specific Pipelined IPs. In ICCD’06, Oct. 2006.

[12] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: A

High-Level Synthesis Framework for Applying Parallelizing

Compiler Transformations. In Proceedings of VLSI’03, 2003.

[13] INRIA, Tech. Project. PowWow, Protocol for Low Power

Wireless Sensor Network, http://powwow.gforge.inria.fr/.

[14] J. Cong, G. Han, and W. Jiang. Synthesis of an Application

Specific Soft Multiprocessor System. In Proceedings of

http://www.xbow.com/

Volume III, Issue IA, January 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 92

FPGA’07, February 2007.

[15] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction

Selection using Binate Covering for Code Size Optimization. In

Proceedings of ICCAD’95, Nov 1995.

[16] L.L’Hours. Generating Efficient Custom FPGA Soft-Cores for

Control-Dominated Applications. In Proceedings of ASAP ’05,

Washington, DC, USA, 2005.

[17] S. Mysore, B. Agrawal, F. Chong, and T. Sherwood. Exploring

the Processor and ISA Design for Wireless Sensor Network

Applications. In Proceedings of VLSI’08, Jan. 2008.

[18] L. Nazhandali, M. Minuth, and T. Austin. SenseBench: Toward

an Accurate Evaluation of Sensor Network Processors. In

Proceedings of IISWC’05, Oct. 2005.

[19] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,

A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, D. Culler.

TinyOS: An Operating System for Sensor Networks . Book

Chapter in Ambient Intelligence by Springer, 2005.

[20] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava.

Energy-aware Wireless Microsensor Networks. IEEE Signal

Processing Magazine, 19(2), Mar 2002.

[21] S. Roundy, P. Wright, and J. Rabaey. Energy Scavenging for

Wireless Sensor Networks: with Special Focus on Vibrations.

Springer, 2004.

[22] Texas Instruments. MSP430 User Guide. Tech. Report, 2009.

[23] University of California, Berkeley. Tech. project: Smart dust.

