
Volume III, Issue III, March 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 28

BOTNET: Lifecycle, Architecture and Detection Model

Divya Nanda Pooja Wadhwa Sanjay Singh Deepak Kumar

Department of Department of Department of Department of

Computer Engineering, Computer Engineering, Computer Engineering, Computer Engineering

Pune University, India Pune University, Pune Pune University, Pune Pune University, Pune

divya.nanda01@gmail.com socutediawadhwa@gmail.com singh_sjy@yahoo.co.in, deepakkumaratwork@rediffmail.com

Abstract - Global Internet threats are undergoing a profound

transformation from attacks designed solely to disable

infrastructure to those that also target people and

organizations. Behind these new attacks is a large pool of

compromised hosts sitting in homes, schools, businesses and

governments around the world. These systems are infected

with a bot that communicates with bot controller and other bots

to form what is referred to as a botnet. BOTNET is a large

network of compromised computers used to attack other

computer systems for malicious intent [1]. So, Botnets are

networks of malware-infected machines that are controlled by

an adversary, and which are the cause of a large number of

problems on the internet. They are increasing faster than any

other type of malware and have created a huge army of hosts

over the internet. By coordinating themselves, they are able to

initiate attacks of unprecedented scales. We start from the

definition and essential properties of botnets. As defined above,

a botnet is a coordinated group of malware instances that are

controlled via C&C communication channels. The essential

properties of a botnet are that the bots communicate with some

C&C server/peers, perform malicious activities, and do so in a

similar or correlated way. Accordingly, our detection system

clusters similar communication traffic and similar malicious

traffic, and performs cross cluster correlation to identify the

hosts that share both similar communication patterns and

similar malicious activity patterns. These hosts are thus bots in

the monitored network.
This paper presents an approach to understand, design and

implement a Botnet Detection System. In order to achieve this,

a detailed analysis of the current Botnet Models, its

architecture, threat and impact is studied and Botnet Detection

software, called “Bot Digger” is to be designed and

implemented. Botnets are now the key platforms for many

Internet attacks, such as spam, distributed denial-of-service

(DDoS), identity theft and phishing. Most of the current botnet

detection approaches works only on specific command and

control (C&C) protocols (e.g., IRC, HTTP, etc.) and structures

(e.g., centralized, unstructured etc.), can become ineffective as

botnets change their C&C techniques. The aim of this paper is

to research about the Botnets and develop a Botnet detection

System, by using a general detection framework that is

independent of botnet C&C protocol and structure.

I. INTRODUCTION

nternet Security is one of the major concerns all over the

world and a lot of it is being weakened through Botnets

operating worldwide. The Botnet is commandeered by a

“botmaster” and utilized as a “platform” for attacks and

activities such as spam, phishing, identity theft etc. In order

for a botmaster to command a botnet, there needs to be a

command and control (C&C) channel through which bots

receive commands and coordinate attacks and fraudulent

activities. The C&C channel is the means by which

individual bots form a botnet. We start by exploring the life

cycle of Botnet which consists of a linear sequence of

stages.

A) Botnet Life-Cycle

There are six stages associated here and the final stage

i.e attack success, is reached only after all previous stages

have been successfully carried out.

1. The Conception Stage:

 Motivation – The motivations of a botmaster could be

classified as: Money, Entertainment, Ego, Cause, Entrance

to social groups, and Status.

 Design – To design the desired botnet, several aspects are

carefully considered during this process, especially those

regarding the bot infection and botnet communications.

However, the key decision on the design i.e. architecture of

the botnet architecture could be: Centralized – unique

command & control (C&C) server, distributed or P2P

based, all the bots of the botnet act simultaneously as

servers and clients, or hybrid or unstructured.

 Implementation – Once the botnet is conceptually conceived

and designed, the last process of this stage is the own

implementation of the bot code, following a traditional

software development process.

2. The Recruitment Stage (or Infection Stage) – will deploy the

botnet software for its operation in a real environment. A

user may be infected from execution of an attachment in a

fake email or opening of a binary resource downloaded from

a P2P network.

3. The Interaction Stage, this stage refers to all the interactions

performed during the botnet operation. One of the main

differences between botnets and other type of malwares is

the existence of communications by using C&C messages.

4. The Marketing Stage, At this point, the botnet has been

created and it is plenty of functionality after the previous

stages. Now, the botmaster needs some motivation to use it.

The expected economical profit is usually obtained by -

Selling the botnet code or, Renting the botnet code or its

services.

5. The Attack Execution Stage – The final goal of a botnet is

the execution of an attack.

I

Volume III, Issue III, March 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 29

II. BOTNET ARCHITECTURE

1. Star or Centralized C&C Topology

The Star topology relies upon a single centralized

C&C resource to communicate with all bot agents. Each bot

agent is issued new instructions directly from the central

C&C point [2].

Figure 1: Centralized C&C Servers

2. Multi-Server C&C Topology

Multi-server C&C topology is a logical extension

of the Star topology, in which multiple servers are used to

provide C&C instructions to bot agents. These multiple

command systems communicate amongst each other as they

manage the botnet. Should an individual suffer fail or be

permanently removed, commands from the remaining

servers maintain control of the botnet [2].

Figure 2:Multi-server C&C Topology

3. Hierarchical C&C Topology

A Hierarchical topology reflects the dynamics of the

methods used in the compromise and subsequent

propagation of the bot agents themselves. The command

instructions suffer latency issues making it difficult for a

botnet operator to use the botnet for real-time activities [2].

Figure 3: Hierarchical C&C Topology

4. Peer-to-Peer Topology

Millions of users are daily sharing programs,

movies and games. Each host periodically connects to its

neighbor to retrieve orders from the Botmaster. The

Botmaster only need to connect to one of the Bots (peer) to

send his commands all over the network [2].

Figure 4:P2P Hybrid C&C Topology

5. Unstructured or Random C&C Topology

Each Bot has the ability to scan the internet in

order to find another Bot. Random botnets are highly

resilient to shut down and hijacking because they lack

centralized C&C and employ multiple communication paths

between bot agents [2].

Volume III, Issue III, March 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 30

Figure 5: Random C&C Topology

Along with the Botnet Architecture, another very important

factor guiding the making of a powerful Botnet is the type of

communication protocol being used. Below table

summarizes our study of different communication protocol

based botnets.

TABLE 1: COMPARISION OF COMMUNICATION PROTOCOLS

Protocol
Ease of

Setup
Efficiency

Effectiv

eness
Robustness

IRC Simple High High Low

HTTP Medium High High High

P2P Complex Low Medium High

III. BOTNET DETECTION

Botnet detection and tracking has been a major research

topic in recent years. Researchers have proposed a few

approaches [3,4,5] to detect the existence of botnets in

monitored networks. Almost all of these approaches are

designed for detecting botnets that use IRC or HTTP based

C&C. For example, Rishi [4] is designed to detect IRC

botnets using known IRC bot nickname patterns as

signatures. Another more recent system, BotSniffer [5], is

designed mainly for detecting C&C activities with

centralized servers. According to our studies, the botnet

detection techniques can be classified into three, namely,

 Honeypot[6]

 Passive network traffic monitoring and analysis, and

 Based on traffic application.

1. Honeypot based detection

Generally it consists of a computer, data or a

network site that appears to be part of network, but is

actually isolated and monitored, and which seems to contain

information or a resource of value to attackers. Honeypots

are mostly useful to understand botnet technology and

characteristics, but do not necessarily detect bot infection.

2. Traffic Application based Detection

Botnet detection techniques based on traffic

application classification are usually guided by botnet and

C&C control protocol e.g. if one is only interested in IRC-

based botnets then traffic will be classified into IRC and

non-IRC groups.

3. Passive network traffic monitoring and analysis based

detection

Botnet detection techniques based on passive

traffic monitoring have been useful to identify the existence

of botnets. These techniques can be classified as being

signature-based, anomaly-based, DNS-based, and mining-

based that will be described and summarized in this section

respectively.

A. Signature-based Detection

Knowledge of useful signatures and behavior of

existing botnets is useful for botnet detection. For example,

Snort is an open source intrusion detection system (IDS) that

monitors network traffic to find signs of intrusion. However,

this solution is not useful for unknown bots.

B. Anomaly-based Detection

Anomaly-based detection techniques attempt to

detect botnets based on several network traffic

anomalies such as high network latency, high volumes

of traffic, traffic on unusual ports, and unusual system

behavior that could indicate presence of malicious bots.

Although anomaly detection techniques solve the

problem of detecting unknown botnets, problems with

anomaly detection can include detection of an IRC

network that may be a botnet but has not been used yet

for attacks, hence there are no anomalies.

C. DNS-based Detection

DNS-based detection techniques are based on

particular DNS information generated by a botnet.

DNS-based detection techniques are similar to anomaly

detection techniques as similar anomaly detection

algorithms are applied on DNS traffic. In order to

access the C&C server bots perform DNS queries to

locate the respective C&C server that is typically hosted

by a DDNS provider. Thus, it is possible to detect

botnet DNS traffic by DNS monitoring.

D. Mining-based Detection

One effective technique for botnet detection is to

identify botnet C&C traffic. However, botnet C&C

traffic is difficult to detect. Several data mining

techniques including machine learning, classification,

and clustering can be used efficiently to detect botnet

C&C traffic.

Volume III, Issue III, March 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 31

IV. PROPOSED MODEL

A. Problem Statement and Assumptions

According to our definition, a botnet is characterized by

both a C&C communication channel (from which the

botmaster’s commands are received) and malicious

activities (when commands are executed). Regardless of the

specific structure of the botnet (centralized or P2P),

members of the same botnet (i.e., the bots) are coordinated

through the C&C channel. This is largely due to the fact that

bots are non-human driven, pre-programmed to perform the

same routine C&C logic/communication as coordinated by

the same botmaster. In the case, the botmaster chooses to

divide a botnet into sub-botnets, for example by assigning

different tasks to different sets of bots wherein each sub-

botnet will be characterized by similar malicious activities

and C&C communications patterns, and our goal is to detect

each sub-botnet. Hence our assumption holds true in such a

case too.

B. Objectives

The objective of our paper is to detect groups of

compromised machines within a monitored network that are

part of a botnet. We do so by making use of anomaly - based

and mining (Clustering) detection approach of botnets.

We do not aim to detect botnets at the very moment

when victim machines are compromised and infected with

malware (bot) code. In this paper we are not concerned with

the way internal hosts become infected (e.g., by malicious

email attachments, remote exploiting, and Web drive-by

download). We focus on the detection of groups of already

compromised machines inside the monitored network that

are part of a botnet.

C. BotDigger: Architecture

Bot digger’s architecture consists of five main

components: Control Center, Monitoring Engine, Clustering

Engine, Correlation Engine and UI module. Control Center

is the core of the Bot Digger system. It is responsible for

managing all other components of the system. It is

responsible for coordinating all the actions, executions and

operations of each and every component for efficient and

smooth functioning of the system. The Monitoring Engine is

responsible for logging network flows in a format suitable

for efficient storage and further analysis and for detecting

suspicious activities (e.g., scanning, spamming and exploit

attempts).

Figure 6:BotDigger’s Architecture

 A- Plane and C- plane Clustering is done in the Clustering

Engine. We perform a two-layer clustering on activity logs

(generated by A-plane monitor of Monitoring Engine). For

the whole list of clients that perform at least one malicious

activity during one day, we first cluster them according to

the types of their activities (e.g., scan, spam, and binary

downloading). This is the first layer clustering. Then, for

each activity type, we further cluster clients according to

specific activity features (the second layer clustering). C-

plane clustering is responsible for reading the logs generated

by the C-plane monitor and finding clusters of machines that

share similar communication patterns. First of all, we filter

out irrelevant (or uninteresting) traffic flows. This is done in

two steps: basic-filtering and white-listing. Next, we further

reduce the traffic workload by performing aggregation of

related flows into communication flows (C-flows) as

follows:

 Aggregation of traffic flows:

Given an epoch E (typically one day), all m TCP/UDP

flows that share same protocol (TCP or UDP), source IP,

destination IP and port, are aggregated into the same C-flow

ci.

ci = {fj}j = 1..m

where each fj is a single TCP/UDP flow.

Basically, the set {ci} i = 1..n of all the n C-flows observed

during E tells us “who was talking to whom”, during that

epoch.

Volume III, Issue III, March 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 32

 Vector Representation of C-flows

The objective of C-plane clustering is to group hosts

that share similar communication flows. This can be

accomplished by clustering the C-flows. In order to apply

clustering algorithm to C-flows, we first need to translate

them in a suitable vector representation.

We extract a number of statistical features from each C-flow

ci, and translate them into d-dimensional pattern vectors, pi ∈

R
d
.

We can describe this task as a projection function F: C-plane

→ R
d
.

The projection function F is defined as follows. Given a C-

flow ci, we computer the discrete sample distribution of

(currently) four random variables:

a) Number of flows per hour(fph)

fph is computed by counting the number of TCP/IP flows in

ci that are present for each hour of that epoch E.

b) Number of packets per flow(ppf)

ppf is computed by summing that total number of packets

sent within each TCP/IP flow in ci

c) Average number of bytes per packets(bpp)

bpp is computed for each TCP/UDP flow fi ∈ ci by dividing

the overall number of bytes transferred within fj by the

number of packets sent within fj.

d) Average number of bytes per second(bps)

bps is computed as the total number of bytes transferred

within each fi ∈ ci divided by the duration of fj.

Given the discrete sample distribution of each of these four

random variables, we compute an approximate version of it

by means of a binning technique. For example, in order to

approximate the distribution of fph we divide the x-axis in

13 intervals as [0, k1), (k1, k2],…, (k12, ∞). The values k1, …,

k12 are computed as follows.

a) Compute the overall discrete sample distribution of fph

considering all the C-flows in the traffic for an epoch E.

b) Compute the quantiles q5%, q10%, q15%, q20%, q25%, q30%,

q40%, q50%, q60%, q70%, q80%, q90% of the obtained

distribution.

c) And at last, we set k1 = q5%, k2 = q10% etc.

Now, for each C-flow we can describe its fph (approximate)

distribution as a vector of 13 elements, where each element i

represents the number of times fph assumed a value within

the corresponding interval (ki-1, ki].

We can apply the same algorithm for ppf, bpp and bps, and

therefore we map each C-flow ci into a pattern vector pi of d

= 52 elements.
 Now we explain how our Correlation Engine

works. After obtaining the clustering results from A-plane

(activities patterns) and C-plane (communication patterns),

the idea is to crosscheck these clusters in the two planes to

find out intersections that reinforce evidence of a host being

part of a botnet.

For this, Let H is the set of hosts reported in the output of

the A-plane clustering module, and h ∈ H. Let A1 be the

cluster of hosts that were found to perform scanning and

were grouped with h in the same cluster. Also, let A2 be a

cluster related to exploit activities that includes h and other

hosts that performed similar activities. A larger overlap

between A1 and A2 would mean a larger possibility of a

stronger
1
 bot (h). Similarly, if h belongs to A-clusters that

have a large overlap with C-clusters, then it means that the

hosts clustered together with share similar activities as well

as similar communication patterns

V. CONCLUSION AND FUTURE WORK

With the steep rise in computer network attacks mostly

due to Botnets, has significantly highlighted the issue to

work on effective and efficient remedy for Botnet. Through

this paper we analyzed the existing Botnets, the detection

techniques and proposed a novel network anomaly and

mining based Botnet Detection System.

In our future work, we will study new techniques to

monitor/cluster communication and activity patterns of

botnets that will be more robust to evasion attempts. In

addition, we plan to further combine different correlation

techniques (e.g., vertical correlation and horizontal

correlation), and develop techniques to work in very high

speed and very large network environments.

VI. REFERENCES

[1] B. Saha and A, Gairola, “Botnet: An overview,” CERT-

In White PaperCIWP-2005- 05, 2005

[2] Botnet Detection Literature Review, Benoit Jacob,

Edinburgh Napier University School of Computing 2008.

[3] J. R. Binkley and S. Singh. An algorithm for anomaly-

based botnet detection. In Proceedings of USENIX

SRUTI’06, pages 43–48, July 2006

[4] J. Goebel and T. Holz. Rishi: Identify bot contaminated

hosts by irc nickname evaluation. In Proceedings of

USENIX HotBots’07, 2007

[5] G. Gu, J. Zhang, and W. Lee. BotSniffer:

Detecting botnet command and control channels in network

traffic. In Proceedings of the 15
th

 Annual Network and

Distributed System Security Symposium (NDSS’08), 2008.

[6] Honeynet Project and Research Alliance. Know your

enemy: Tracking Botnets, March 2005. See

http://www.honeynet.org/papers/bots

