
Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 100

Enhanced Security Approach for Multitier Web

Applications
Madhuri Bagal

1
, Priyanka Lawand

2
, Harshad Ghegadmal

3
, Mayur Deshmukh

4

Dept. of Computer Science & Engineering, Sinhagad Institute of Technology, Lonavala, Tal. Maval, Dist. Pune, India.

1
madhuribagal@gmail.com

2
priyankaslawand@gmail.com

3
hghegadmal@gmail.com

4
enggmayur.deshmukh@gmail.com

Abstract— In today’s era, huge amount of data is stored at

network system but modern network systems have much

trouble in security vulnerabilities such as buffer overflow,

security flaws of applications, and different attacks. Various

IDS systems are used to protect the data from these attacks at

network system.

 In this paper, we present an IDS system that controls the

behaviour of network system at both front end (web server)

and back end database. In this system, we keep eye on both

web request and database request, and find out different

attacks on network system. To implement the system this

paper has used container based architecture. This architecture

maps all request coming to the web server to fire database

query by increasing system security.

Keywords—IDS, Double Guard, Multitier Architecture.

I. INTRODUCTION

eb-Based services and applications have enlarged in

both popularity and complexity over the past few

years. Web applications are used in our daily tasks, such as

e-commerce, social networking, education etc. Such

applications uses multitier web architecture which in holds

of web server as front end logic and back end comprises

database or file server. Unfortunately it has been found easy

to disturb the functionality of Internet by attacking its

infrastructure taking advantage of Internet services and

protocols. The vulnerability of web application has attracted

the attention of malicious hackers to exploit and access to

sensitive information which might lead to enormous gain.

The attacks have recently become more different, as

attention has shifted from attacking the front end to abusing

vulnerabilities of the web applications in order to corrupt

access the back-end database system (e.g., SQL injection

attacks). The security of web-based applications should be

addressed by means of careful design and thorough security

testing. A superfluity of Intrusion Detection Systems (IDSs)

currently examines network packets individually within

both the web-server and the database system. However, in

multitier architectures, the back-end database server is often

protected behind a firewall while the web-servers are

remotely accessible over the Internet. Intrusion detection

systems have been widely used to protect multitier web

services, such as to detect known attacks by matching

misused traffic patterns or signatures Individually, the web

IDS and the database IDS can detect abnormal network

traffic sent to either of them. But, we found that these IDSs

cannot detect cases wherein normal traffic is used to attack

the web server and the database server. For example, if an

attacker with non admin privileges can log in to a web

server using normal-user access credentials, he/she can find

a way to issue a privileged database query by exploiting

vulnerabilities in the web server. Neither the web IDS nor

the database IDS would detect this type of attack since the

web IDS would merely see typical user login traffic and the

database. IDS would see only the normal traffic of a

privileged user. This type of attack can be easily detected if

the database IDS can identify that a privileged request from

the web server is not associated with user-privileged access.

Regrettably, within the current multithreaded web server

architecture, it is not feasible to detect or profile such causal

mapping between web server traffic and DB server traffic

since traffic cannot be clearly attributed to user sessions.

II. THREE TIER ARCHITECTURE

 Web Sphere Application Server provides the application

logic layer in three tier architecture, enabling client

components to interact with data resources and legacy

applications. Collectively, three tier architectures are

programming models that enable the distribution of

application functionality across three independent systems.

W

Fig. Three Tier Architecture

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 101

A. First Tier:

 Responsibility for presentation and user interaction

resides with the first tier components. These client

components enable the user to interact with the second tier

processes in a secure and intuitive manner. Web Sphere

Application Server supports several client types. Clients do

not access the third tier services directly. For example, a

client component provides a form on which a customer

orders products. The client component submits this order to

the second-tier processes, which check the product

databases and perform tasks that are needed for billing and

shipping.

B. Second Tier:

 The second tier processes are commonly referred to as

the application logic layer. These processes manage the

business logic of the application, and are permitted access to

the third tier services. The application logic layer is where

most of the processing work occurs. Multiple client

components can access the second tier processes

simultaneously so this application logic layer must manage

its own transactions.

C. Third Tier:

 The third tier services are protected from direct access

by the client components residing within a secure network.

Interaction must occur through the second tier processes.

III. RELATED WORK

A network Intrusion Detection System is mainly categorized

into the two types: anomaly detection and misuse detection.

In Anomaly detection , the correct and acceptable static

form and dynamic behavior of the system is defined and

characterized first. This can be used to detect the changes or

anomalous behaviors . Then an anomaly detector compares

actual usage patterns against models that are already

established in order to identify abnormal events. We follow

the anomaly detection approach since we depend on a

training phase to build the correct model.

DoubleGuard uses the container ID for each session to

causally map the related events, whether they be concurrent

or not. Databases should be given highest level of security

as they contain vital information. The system presented is

composed of both web IDS and database IDS in order to

achieve more accurate detection. It makes use of a reverse

HTTP proxy for maintaining a reduced level of service

when false positives are present.

Nevertheless there are certain types of attacks that utilize

normal traffics and can be detected by neither the web IDS

nor the database IDS. We used Virtualization in order to

isolate objects and improve security performance. A

lightweight virtualization, such as OpenVZ, Parallels

Virtuozzo, or Linux-VServer are some of the alternatives.

Thousands of containers can run on a single physical host.

In our DoubleGuard, we utilized the container ID so that we

would be able to separate session traffic for identifying

causal relationships between webserver requests and

database query events.

We can initialize thousands of containers on a single

physical machine. These virtualized containers can be

discarded, reverted, or quickly reinitialized for serving new

sessions. As a single physical webserver runs many

containers, each one is an exact replica of the original

webserver. We follow an approach that not only

dynamically generates new containers but also recycles used

ones. Therefore a single physical server can run

continuously while serving all web requests. Each session is

logically separated from other session. Using a read-only

clean template, we initialized each virtualized container. We

assure that each session will be served with a clean

webserver instance at initialization.

IV. PROPOSED SYSTEM

 Initially, this system set up our threat model

which will include our assumptions and the types of attacks

which we are aiming to protect against. We assume that

both the web and the database servers are defenseless.

Attacks are network borne and come from the web clients;

they can launch application layer attacks to compromise the

web servers they are connecting to. The attackers can

bypass the web server to directly attack the database server.

We consider that the attacks can neither be detected nor be

prevented by the current web server IDS, those attackers

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 102

may take over the web server after the attack, and that

afterward they can obtain full control of the web server to

launch subsequent attacks. For example, the attackers could

modify the application logic of the web applications,

eavesdrop or hijack other user’s web requests, or intercept

and modify the database queries to steal sensitive data

beyond their privileges.

 On the other hand, at the back end, we assume that the

database server will not be completely taken over by the

attackers. Attackers may strike the database server through

the web server or, more directly, by submitting SQL

queries, they may obtain and pollute sensitive data within

the database. These assumptions are reasonable since, in

most cases, the database server is not exposed to the public

and is therefore difficult for attackers to completely take

over. We assume no prior knowledge of the source code or

the application logic of web services deployed on the web

server. In addition, we are analyzing only network traffic

that reaches the web server and database. Our assumption is

that no attack would occur during the training phase and

model building.

V. COMMON WEB APPLICATION ATTACKS

1. Privilege Escalation Attack

For every web application admin level query and

regular user query (SQL query) are stored separately in

the database. When regular user sends web request, SQL

query gets triggered and when admin sends any web

request, set of admin level query gets triggered.

Suppose any attacker enters as a regular user using regular

user’s credentials and tries to trigger admin level queries to

obtain administrator data. Here attacker tries to upgrade his

privilege from regular user to admin. This attack is easily

detected using query matching model because regular user’s

web request does not match with admin level query. In this

way using query matching model detect attack and prevent

it.

2. Hijack Future Session Attack

In computer science, session hijacking is also known as

cookie hijacking. This kind of attack is mainly aimed at the

web server side. An attacker usually takes over the web

server and therefore hijacks all subsequent legitimate user

session to launch attack. For instance, by hijacking other

user sessions, the attacker can eavesdrop, send spoofed

replies, and/or drop user requests. A session hijacking attack

can be further categorized as a spoofing/man-in-the-Middle

attack, an Exfiltration attack, a denial-of-Service attack or

replay attack. According to the mapping model, the web

request should invoke some database queries and then

abnormal situation can be detected. However, neither a

conventional web server IDS nor a database IDS can detect

such an attack by itself. Fortunately, the isolation property

of our container based web server architecture can also

prevent this type of attack. As each user’s web requests are

isolated into a separate container, an attacker can never

break into other user’s sessions.

3. Injection Attack

Attacks such as SQL injection do not require

compromising the web server. Attackers can use existing

vulnerabilities in the web server logic to inject the data or

string content that contains the exploits and then use the

web server to relay these exploits to attack the back-end

Fig. Privilege escalation attack

Fig. Hijack Future Session Attack

Fig. SQL Query Injection Attack

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 103

database. Since our approach provides two-tier detection ,

even if the exploits are accepted by the web server, the

relayed contents to the DB server would not be able to take

on the expected structure for the given web server request.

For instance, since the SQL injection attack changes the

structure of the SQL queries, even if the injected data were

to go through the web server side, it would generate SQL

queries in a different structure that could be detected as a

deviation from the SQL query structure that would normally

follow such a web request.

4. Direct DB Attack

This kind of attack mainly happens by passing firewall.

It is possible for an attacker to bypass the web server or

firewall and connect directly to the database.

 In direct DB attack request will not come from

front end (like JSP or HTML pages). It will come from

direct java program which sending request to server. An

attacker could also have already taken over the web

server and be submitting such queries from the web

server without sending web request. Furthermore, if

these DB queries were within the set of allowed

queries, then the IDS it would not detect its web

request. This type of attack can be caught with our

approach since we cannot match any web request these

queries.

5. Man-In-The-Middle Attack

In this type of attack, even though the attacker tries

to make independent connections with those who are

vulnerable, it will not be able to authenticate itself to

the prove and verifier which has no clue of the

fingerprint of the two end nodes. And the intruders not

get a chance to know the finger print of the node.

VI. CONCLUSION

 We propose an intrusion detection system which

builds models of normal behavior for multitier web

applications from both front-end web (HTTP) requests

and back-end database (SQL) queries. Previous IDSs

correlated or summarized alerts, whereas Double Guard

forms a container-based IDS with multiple input

streams to produce alerts. Such correlation of input

streams provides a better characterization of the system

for anomaly detection since the intrusion sensor has a

more specific normality model that investigates a wider

range of attacks

VII. FUTURE SCOPE

It is possible to make some future modifications

into the system; which can be make existing system

more efficient. The Intrusion detection systems can be

installing on wide range of machines having different

operating system and platforms. The query processing

mechanism can be made simpler by applying natural

language processing (NLP); so as to convert simple

English sentences into SQL queries.

Since the this system works on the basis of signature;

each activity of intrusions is to be memorized by the

system previously. New attacks are often

unrecognizable by popular IDS. So there is continuous

race going in between new attacks and detection

systems have been a challenge. Nowadays Intrusion

detection systems also work on the wireless networks.

The latest wireless devices come with its own set of

protocols for communication that break the traditional

OSI layer model. So IDS must learn new

communication patterns of the latest wireless

technology.

REFERENCES

[1] D. Bates, A. Barth, and C. Jackson, ―Regular Expressions

Considered Harmful in Client-Side XSS Filters,‖ Proc. 19th

Int’l Conf. World Wide Web, 2010.
[2] Meixing Le, Angelos Stavrou, Member, IEEE, and Brent

ByungHoon Kang, Member, IEEE,‖ DoubleGuard: Detecting
Intrusions in Multitier Web Applications‖, IEEE Transactions

on Dependable and Secure Computing,Vol.9,No.4,July/August

2012.
[3] M. Christodorescu and S. Jha, ―Static Analysis of Executables

toDetect Malicious Patterns,‖ Proc. Conf. USENIX Security

Symp.,2003.
[4] M.Patil, R. More,‖Using Container Architecture to Detect

Intrusion for Multitier Web Application‖, International Journal

of Computer Applications (0975 – 8887) Volume 62– No.9,
January 2013.

[5] N.Sakthipriya, K.Palanivel, ―Intrusion Detection for Web

Application: An Analysis‖, International Journal of Scientific &

Engineering Research, Volume 4, Issue 5, May-2013 ISSN

2229-5518

[6] S.Gore, A. Rangari, V.Bhagat, K. Khalilullah,‖Dual
Armor: Intrusion Detection and Prevention System in Multitier

Web Applications‖, International Journal of Emerging

Fig. SQL Query Injection Attack

Fig. Direct Database Attack

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 104

Technology and Advanced Engineering Website:

www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified

Journal, Volume 3, Issue 1, January 2013).

[7] S.Potter, J.Nieh,‖Apiary: Easy-to-Use Desktop Application
Fault Containment on Commodity Operating Systems‖,

Columbia University Technical Report CUCS-034-09, August

2009.
[8] Tripti Sharma, Khomlal Sinha,‖Intrusion Detection Systems

Technology‖, International Journal of Engineering and

Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-1,
Issue-2, December 2011.

[9] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna,

―TowardAutomated Detection of Logic Vulnerabilities in Web
Applications,‖Proc. USENIX Security Symp., 2010.

[10] W. Robertson, F. Maggi, C. Kruegel, and G. Vigna, ―Effective

Anomaly Detection with Scarce Training Data,‖ Proc. Network
and Distributed System Security Symp. (NDSS), 2010.

