
Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 148

Survey of End-to-End TCP Congestion Control

Protocols

Mrs Uma R Pujeri

Assistant Professor,

Adithya Institute of Technology,

Coimbatore.
umapujeri@gmail.com

Dr. V. Palanisamy

Principal,

INFO college of Engineering,

Coimbatore

info@infoengg.com

Abstract - This paper is a survey of TCP congestion control

principles and techniques. The TCP protocol is used by the

majority of the network applications on the Internet. TCP

performance is strongly influenced by its congestion control

algorithms that limit the amount of transmitted traffic based on

the estimated network capacity and utilization. In this work

TCP Tahoe, TCP Reno, TCP NewReno, TCP Vegas are

considered. Also discussed how TCP reacts to the congestions

and depending on the algorithm how the congestion window is

minimized and how the packets are retransmitted. Simulation

has been done with WAN type network analysing the

throughput and performance of these TCP variants in order to

discover which of them has a better performance.

Index Terms—TCP, Protocol, PSTN, Congestion, CWD, ACK,

RTT, SSThresHold.

I. INTRODUCTION

oday, computer networks are the core of modern

communication. The scope of communication has

increased tremendously and all aspect of public switched

telephone network(PSTN) are computer controlled. Due to

computer networks communication between networked

computers was possible. Computer networks made growth in

business, online shopping, online education, online

reservation possible. This made computer network to grow

tremendously. The number of host started increasing

exponentially increasing the traffic on the network. As the

traffic on the networks increases the congestion in the

network also increases.

Congestion has become an important issue in the packet-

switched networks. When the traffic or load in the network

increases beyond the capacity of the network will lead to the

congestion in the computer network. Congestion will

severely affect the throughput. When congestion occurs in a

computer network throughput will severely decrease and

delay will increase.

II. CONGESTION CONTROL ALGORITHMS

The algorithm for congestion control is the main reason we

can use the internet successfully today. Despite largely

unpredictable user access of internet, resource bottleneck and

limitation, without TCP congestion control algorithm the

Internet could have became a history a long time ago. During

congestion, the network throughput may drop to zero and the

path delay may become very high. A congestion control

algorithm helps the network to recover from the congestion

state. A congestion avoidance scheme reduces the delay in

the network and increases throughput. Such schemes prevent

a network from entering the congested state. Congestion

avoidance is a prevention mechanism while congestion

control is a recovery mechanism. The purpose of this paper is

to analyse and compare the different congestion control and

avoidance mechanisms which have been proposed for

TCP/IP protocols, namely: Tahoe, Reno, New-Reno, and

TCP Vegas. TCP is a reliable connection-oriented end-to-end

reliable protocol. TCP sends a packet and waits for an

acknowledgefrom a receiver. During the transmission the

packet may be lost due to two reasons

 Due to network error

 Or due to congestion.

Thus it becomes important for TCP to react to a packet loss

and take action to reduce congestion. TCP ensure reliability.

It sets timer and waits for acknowledgement from the

receiver. If it does not receive the acknowledgement within

the specified timer. It retransmits the packet again to the

receiver. In this paper we will study different congestion

control algorithm and how they react when the congestion

occurs and how they differ from each other.

A. TCP TAHOE

 TCP Tahoe is a congestion control algorithm. TCP

is an reliable protocol i.e. TCP sends packets and waits for an

acknowledge when the receiver receive the packets it sends

back the positive acknowledge .TCP also ensures the

equilibrium i.e. number of packets sent is equal to the

number of packets received. It also maintains a congestion

window CWD to reflect the network capacity. However there

T

mailto:umapujeri@gmail.com

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 149

are certain issues, which need to be resolved to ensure this

equilibrium.
1) Determination of the available bandwidth

2) Ensuring that equilibrium is maintained.

3) How to react to congestion.

TCP Tahoe Congestion Control algorithm ensures this

equilibrium

 Slow start

 Congestion Avoidance

 Fast Retransmit.

Slow Start: Tahoe suggests that whenever a TCP connection

starts or re-starts after a packet loss it should go through a

procedure called „slow-start‟. The reason for this procedure is

that an initial burst might overwhelm the network and the

connection might never get started. Slow starts suggest that

the sender set the congestion window to 1 and then for each

ACK received it increase the CWD by 1. So in the first round

trip time(RTT) we send 1 packet, in the second we send 2

and in the third we send 4. Thus we increase exponentially

until we lose a packet which is a sign of congestion. When

we encounter congestion we decreases our sending rate and

we reduce congestion window to one and start over again.

The important thing is that Tahoe detects packet losses by

timeouts.

Congestion Avoidance:

 For congestion avoidance Tahoe uses „Additive Increase

Multiplicative Decrease‟. A packet loss is taken as a sign of

congestion and Tahoe saves the half of the current window as

a threshold value. It then set CWD to one and starts slow

start until it reaches the threshold value. After that it

increments linearly until it encounters a packet loss. Thus it

increase it window slowly as it approaches the bandwidth

capacity.

Fast Retransmit: Coarse grained TCP time-outs sometimes

lead to long periods wherein a connection goes dead waiting

for a timer to expire. Fast Retransmit a heuristic that

sometimes “triggers” the retransmission of a packet faster

than permissible by the regular time-out. Every time a data

packet arrives at a receiver, the receiver ACKs even though

the particular sequence number has been acknowledged.

Thus, when a packet is received in out of order, resend the

ACK sent last time a duplicate ACK.

 When a duplicate ACK is seen by the sender, it infers

that the other side must have received a packet out of order.

Delays on different paths could be different thus; the missing

packets may be delivered. So wait for “some” number of

duplicate ACKs before resending data. This number is

usually 3.

Figure 1:Fast Retransmit

Generally, fast retransmit eliminates about half the coarse-

grain timeouts. This yields roughly a 20% improvement in

throughput.

Problem : The problem with Tahoe is that it take a complete

timeout interval to detect a packet loss and in fact, in most

implementations it takes even longer because of the coarse

grain timeout. Also since it doesn‟t send immediate ACK‟s,

it sends cumulative acknowledgements, therefore it

follows a „go back n „ approach. Thus every time a packet is

lost it waits for a timeout and the pipeline is emptied. This

offers a major cost in high bandwidth delay product links.

 Thus Due to automatic set back to slow start mode of

operation with initial congestion window of one every time

packet loss is detected we see TCP Tahoe does not prevent

the communication link from going empty. Hence this may

have high cost in high bandwidth product links.

 FIGURE 2: TCP TAHOE THROUGHPUT

Volume III, Issue IV, March 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 150

You can see the operation of TCP Tahoe clearly from the

above figure:

1. At approximately time 0, TCP Tahoe starts and it is in the

slow start mode: the congestion window size increases

exponentially

2. At approximately time 5, packet loss is detected.

TCP marks SSThresh = 25 (approximately) and begins

another slow start

3. When it reaches CWND = 25 (approximately), the

CWND increases linearly - here TCP Tahoe enters the

congestion avoidance mode

4. At approximately time 19, TCP Tahoe detects packet loss

and begins a slow start.

 SSThresHold is approximately 22.

TCP begins another slow start and so on.

 B. TCP RENO

 This Reno retains the basic principle of Tahoe,

such as slow starts and the coarse grain re-transmit timer.

However it adds some intelligence over it so that lost

packets are detected earlier and the pipeline is not emptied

every time a packet is lost. Reno requires that we receive

immediate acknowledgement whenever a segment is

received. The logic behind this is that whenever we

receive a duplicate acknowledgment, then this duplicate

acknowledgment could have been received if the next

segment in sequence expected, has been delayed in the

network and the segments reached there out of order or

else that the packet is lost. If we receive a number of

duplicate acknowledgements then that means that

sufficient time has passed and even if the segment had

taken a longer path, it should have gotten to the receiver

by now. There is a very high probability that it was lost.

So Reno suggest an algorithm called „Fast Re-Transmit‟.

Whenever we receive 3 duplicate ACK‟s we take it as a

sign that the segment was lost, so we re-transmit the

segment without waiting for timeout. Thus we manage to

re-transmit the segment with the pipe almost full.

Another modification that RENO makes is in that after a

packet loss, it does not reduce the congestion window to

1. Since this empties the pipe. It enters into a algorithm

which we call „Fast-Re-Transmit‟. The basic algorithm is

presented as under.

1) Each time we receive 3 duplicate ACK‟s we take that

to mean that the segment was lost and we re-transmit the

segment immediately and enter „Fast-Recovery‟.

2) Set SSthresh to half the current window size and also

set CWD to the same value.

3) For each duplicate ACK receive increase CWD by one.

If the increase CWD is greater than the amount of data in

the pipe then transmit a new segment else wait. If there

are „w‟ segments in the window and one is lost, the we

will receive (w-1) duplicate ACK‟s. Since CWD is

reduced to W/2, therefore half a window of data is

acknowledged before we can send a new segment. Once

we retransmit a segment, we would have to wait for at

least one RTT before we would receive a fresh

acknowledgement. Whenever we receive a fresh ACK we

reduce the CWND to SSthresh. If we had previously

received (w-1) duplicate ACK‟s then at this point we

should have exactly w/2 segments in the pipe which is

equal to what we set the CWND to be at the end of fast

recovery. Thus we don‟t empty the pipe, we just reduce

the flow. We continue with congestion avoidance phase of

Tahoe after that.

FIGURE 3 TCP RENO THROUGHPUT

Problems: Reno performs very well over TCP when

the packet losses are small. But when we have multiple

packet losses in one window then RENO doesn‟t perform

too well and its performance is almost the same as Tahoe

under conditions of high packet loss. The reason is that it

can only detect a single packet loss. If there is multiple

packet drop then the first info about the packet loss comes

when we receive the duplicate ACK‟s. But the

information about the second packet which was lost will

come only after the ACK for the retransmitted first

segment reaches the sender after one RTT. Also it is

possible that the CWD is reduced twice for packet losses

which occurred in one window. Suppose we send

packets 1,2,3,4,5,6,7,8,9 in that order. Suppose packets 1,

and 2 are lost. The ACK‟s generated by 2,4,5 will cause

the re-transmission of 1 and the CWD is reduced to 7.

Then when we receive ACK for 6,7,8,9 our CWD is

sufficiently large to allow to us to send 10,11. When the

re-transmitted segment 1 reaches the receiver we get a

fresh ACK and we exit fast-recovery and set CWD to 4.

Then we get two more ACK‟s for 2(due to 10,11) so once

again we enter fast-retransmit and re-transmit 2 and then

enter fast recovery. Thus when we exit fast recovery for

the second time our window size is set to 2.

C. TCP NEW RENO

 TCP NewReno is same as the TCP Reno only

difference between the TCP NewReno and TCP Reno is

Volume III, Issue IV, March 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 151

that TCP NewReno can handle multiple packet loss

without coming of fast recovery phase.

TCP New Reno Algorithm

The Idea: If the sender remembers the number of the last

segment that was sent before entering the Fast Retransmit

phase then it can deal with a situation when a “new” ACK

(which is not duplicate ACK) does not cover the last

remembered segment (“partial ACK”) This is a situation

when more packets were lost before entering the Fast

Retransmit. After discovering such situation the sender

will retransmit the new lost packet too and will stay at the

Fast Recovery stage. The sender will finish the Fast

Recovery stage when it will get ACK that covers last

segment sent before the Fast Retransmit

Algorithm

[1] Set ssthresh to max (FlightSize / 2, 2*MSS)

(FlightSize is number of unacknowledged packet)

[2] Record to “Recovery” variables the highest sequence

number transmitted

[3] Retransmit the lost segment and set cwnd to ssthresh

+ 3*MSS.

[4] The congestion window is increased by the number of

segments (three) that were sent and buffered by the

receiver

[5] For each additional duplicate ACK received,

increment cwnd by MSS.

[6] Thus, the congestion window reflects the additional

segment that has left the network.

[7] Transmit a segment, if allowed by the new value of

cwnd and the receiver's advertised window.

Figure 4 TCP NEW RENO THROUGHPUT

D. TCP VEGAS

 TCP Vegas was originally proposed by Brakmo and

had several new features in it. One of the most important

differences between TCP Vegas and TCP Reno is its

congestion avoidance scheme. While TCP Reno (and its

variants like NewReno) rely on packet loss detection to

detect network congestions, TCP Vegas uses a

sophisticated bandwidth estimation scheme to proactively

gauge network congestion. TCP Vegas varies it

congestion window (cwnd) using the following algorithm

Record sending time of every packet and the time of ACK

reception when it receives a duplicate ACK, Vegas checks

to see if the RTT is greater than timeout. If it is, then

without waiting for the third duplicate ACK, it

immediately retransmits the packet.

When a non-duplicate ACK is received, if it is the first or

second ACK after a retransmission, Vegas again checks

to see if the RTT is greater than timeout. If it is, then

Vegas retransmits the packet.

Note: Only decrease congestion window for current

window size, not for previous window size.

Congestion Avoidance:

BaseRTT = min RTT ever

Exp Throughput = window size / BaseRTT

Actual Rate = segment size / measured RTT of

corresponding RTT

Diff = Exp Throughput – Actual Rate

Diff < α: increase window linearly;

Diff > β: decrease window linearly;

α < Diff < β: keep window size unchanged.

The sender defines three thresholds α, β and γ we set α =

2, β = 4 and γ = 1

Slow-Start:

Expo growth every other RTT, instead of every RTT as in

Reno.

Compare Exp with Actual as in congestion avoidance.

When Actual < γ, Vegas changes from slow start to linear

increase/decrease.

Result:

Smooth window size, no saw tooth.

40% – 70% throughput improvement.

Problems:

1. Vegas has good performances when the queue

sizes at intermediate routers are large; it enables

a full utilization of the link while it keeps the

sending rate smoother. However, when the

available bandwidth is not sufficiently large,

Vegas has the same behaviour as Reno and does

Volume III, Issue IV, March 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 152

not manage to make efficient use of its new

mechanism for congestion detection.

2. Sensitive to RTT estimation.

FIGURE 5 TCP VEGAS THROUGHPUT

1) COMPARISION OF TCP CONTROL ALGORITHMS

 Algorithm

TCP TAHOE 1. Slow Start

2. Congestion Avoidance

Fast Recovery

TCP RENO 1. Slow Start

2. Congestion Avoidance

3. Fast Recovery

Fast Retransmission

TCP NEW

RENO

1. Slow Start

2. Congestion Avoidance

3. Fast Recovery

4. Fast-Retransmit

TCP NewReno can handle multiple

packet loss without coming out of fast

recovery phase.

TCP VEGAS 1. Slow Start

2. Packet loss detection

3. Detection of available bandwidth

2) COMPARISION OF TCP CONTROL ALGORITHMS

WRT PROBLEMS.

 Problems
TCP

TAHOE

Every time a packet is lost it waits

for the timeout and then retransmits

the packet. It reduces the size of

congestion window to 1 just because

of 1 packet loss, this inefficiency

cost a lost in high bandwidth delay

product links

TCP

RENO

TCP Reno is helpful when only 1

packet is lost, in case of multiple

packet loss it acts as Tahoe. Then

evolved TCP New Reno which is a

modification of TCP Reno and deals

with multiple packets loss.

TCP NEW

RENO

New-Reno suffers from the fact that

its take one RTT to detect each

packet loss. When the ACK for the

first retransmitted segment is

received only then can we deduce

which other segment was lost.

TCP

VEGAS

Vegas has good performances when

the queue sizes at intermediate

routers are large; it enables a full

utilization of the link while it keeps

the sending rate smoother. However,

when the available bandwidth is not

sufficiently large, Vegas has the

same behaviour as Reno and does

not manage to make efficient use of

its new mechanism for congestion

detection. Sensitive to RTT

estimation.

3) COMPARISION OF TCP CONTROL ALGORITHMS

WRT NUMBER OF PACKET

SENT,RECEIVED,DROPED AND ACKNOWLEDGED.

.

 No of

Packet

Sent

No Of

Packet

Received

No of

Packet

Drop

No of

ACK

TCP

TAHOE

9736 9736 23 43812

TCP

RENO

10264 10264 23 46188

Table 1: Comparisons of TCP Algorithm

Table 2: Comparisons of TCP Algorithm wrt

Problems

Table 3: Comparisons of TCP Algorithm WRT

PACKET SENT,PACKET DROPED,PACKET

RECEIVED AND ACK

Volume III, Issue IV, March 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 153

TCP

NEW

RENO

9796 9796 25 44082

TCP

VEGAS

11624 11624 3 52308

III. CONCLUSION

In this paper, we have evaluated the performance

characteristics of various TCP congestion control schemes

under the wired network conditions with bottleneck end-

to-end link capacities. We can conclude based on

throughput calculation that TCP vegas gives highest

performance as it can change its congestion window based

on network traffic situation.

REFERENCES

[1] Van Jacobson, Congestion Avoidance and Control. Computer

Communications Review, 18 (4), August 1988, 314-329.

[2] K.Fall, S.Floyd “Simulation Based Comparison of Tahoe, Reno and

SACK TCP” .

[3] Paul Meeneghan and Declan Delaney, An Introduction to NS, Nam

and Otcl scripting, Department of Computer Science, National

University of Ireland, Maynooth, 2004-05.

[4] O. Ait-Hellal, E.Altman “Analysis of TCP Reno and TCP Vegas”.

[5] S.Floyd, T.Henderson “The New-Reno Modification to TCP‟s Fast

Recovery Algorithm” RFC 2582,Apr 1999

[6] B. Sikdar, S. Kalyanaraman and K. S. Vastola, Analytic Models for

the Latency and Steady-State Throughput of TCP Tahoe, Reno,and

SACK, IEEE/ACM Transactions On Networking, 11(6), December

2003, 959-971.

[7] Amit Aggarwal, Stefan Savage, and Thomas

Anderson.Understanding the Performance of TCP Pacing, March 30,

2000, IEEE InfoCom 2000.

[8] Harris Interactive. P.C. and Internet Use Continue to Grow at Record

Pace. Press Release, February 7, 2000.

[9] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Algorithms, January 1997, RFC 2001.

[10] Z. Wang and J. Crowcroft. Eliminating Periodic Packet Losses in

4.3-Tahoe BSD TCP Congestion Control Algorithm. ACM Computer

Communication Review, 22(2):9–16, Apr. 1992

