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Abstract - This paper is a survey of TCP congestion control 

principles and techniques. The TCP protocol is used by the 

majority of the network applications on the Internet. TCP 

performance is strongly influenced by its congestion control 

algorithms that limit the amount of transmitted traffic based on 

the estimated network capacity and utilization. In this work 

TCP Tahoe, TCP Reno, TCP NewReno, TCP Vegas are 

considered. Also discussed how TCP reacts to the congestions 

and depending on the algorithm how the congestion window is 

minimized and how the packets are retransmitted. Simulation 

has been done with WAN type network analysing the 

throughput and performance of these TCP variants in order to 

discover which of them has a better performance.  

Index Terms—TCP, Protocol, PSTN, Congestion, CWD, ACK, 

RTT,  SSThresHold. 

 

I.  INTRODUCTION 

oday, computer networks are the core of modern 

communication. The scope of communication has 

increased tremendously and all aspect of public switched 

telephone network(PSTN) are computer controlled. Due to 

computer networks communication between networked 

computers was possible. Computer networks made growth in 

business, online shopping, online education, online 

reservation possible. This made computer network to grow 

tremendously. The number of host started increasing 

exponentially increasing the traffic on the network. As the 

traffic on the networks increases the congestion in the 

network also increases. 

Congestion has become an important issue in the packet-

switched networks. When the traffic or load in the network 

increases beyond the capacity of the network will lead to the 

congestion in the computer network. Congestion will 

severely affect the throughput. When congestion occurs in a 

computer network throughput will severely decrease and 

delay will increase. 

II.   CONGESTION CONTROL ALGORITHMS 

The algorithm for congestion control is the main reason we 

can use the internet successfully today. Despite largely 

unpredictable user access of internet, resource bottleneck and 

limitation, without TCP congestion control algorithm the 

Internet could have became a history a long time ago. During 

congestion, the network throughput may drop to zero and the 

path delay may become very high. A congestion control 

algorithm helps the network to recover from the congestion 

state. A congestion avoidance scheme reduces the delay in 

the network and increases throughput. Such schemes prevent 

a network from entering the congested state. Congestion 

avoidance is a prevention mechanism while congestion 

control is a recovery mechanism. The purpose of this paper is 

to analyse and compare the different congestion control and 

avoidance mechanisms which have been proposed for 

TCP/IP protocols, namely: Tahoe, Reno, New-Reno, and 

TCP Vegas. TCP is a reliable connection-oriented end-to-end 

reliable protocol. TCP sends a packet and waits for an 

acknowledgefrom a receiver. During the transmission the 

packet may be lost due to two reasons 

 Due to network error 

 Or due to congestion. 

Thus it becomes important for TCP to react to a packet loss 

and take action to reduce congestion. TCP ensure reliability. 

It sets timer and waits for acknowledgement from the 

receiver. If it does not receive the acknowledgement within 

the specified timer. It retransmits the packet again to the 

receiver. In this paper we will study different congestion 

control algorithm and how they react when the congestion 

occurs and how they differ from each other. 

 
A. TCP TAHOE 

                TCP Tahoe is a congestion control algorithm. TCP 

is an reliable protocol i.e. TCP sends packets and waits for an 

acknowledge when the receiver receive the packets it sends 

back the positive acknowledge .TCP also ensures the 

equilibrium i.e. number of packets sent is equal to the 

number of packets received. It also maintains a congestion 

window CWD to reflect the network capacity. However there 
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are certain issues, which need to be resolved to ensure this 

equilibrium. 
1) Determination of the available bandwidth 

2) Ensuring that equilibrium is maintained. 

3) How to react to congestion. 

TCP Tahoe Congestion Control algorithm ensures this 

equilibrium  

 Slow start 

 Congestion Avoidance 

 Fast Retransmit. 

Slow Start: Tahoe suggests that whenever a TCP connection 

starts or re-starts after a packet loss it should go through a 

procedure called „slow-start‟. The reason for this procedure is 

that an initial burst might overwhelm the network and the 

connection might never get started. Slow starts suggest that 

the sender set the congestion window to 1 and then for each 

ACK received it increase the CWD by 1. So in the first round 

trip time(RTT)  we send 1 packet, in the second we send  2 

and in the third we send 4. Thus we increase exponentially 

until we lose a packet which is a sign of congestion. When 

we encounter congestion we decreases our sending rate and 

we reduce congestion window to one and start over again.  

The important thing is that Tahoe detects packet losses by 

timeouts. 

 
Congestion Avoidance: 

 For congestion avoidance Tahoe uses „Additive Increase 

Multiplicative Decrease‟. A packet loss is taken as a sign of 

congestion and Tahoe saves the half of the current window as 

a threshold value. It then set CWD to one and starts slow 

start until it reaches the threshold value. After that it 

increments linearly until it encounters a packet loss. Thus it 

increase it window slowly as it approaches the bandwidth 

capacity. 

 
Fast Retransmit: Coarse grained TCP time-outs sometimes 

lead to long periods wherein a connection goes dead waiting 

for a timer to expire. Fast Retransmit a heuristic that 

sometimes “triggers” the retransmission of a packet faster 

than permissible by the regular time-out. Every time a data 

packet arrives at a receiver, the receiver ACKs even though 

the particular sequence number has been acknowledged. 

Thus, when a packet is received in out of order, resend the 

ACK sent last time a duplicate ACK. 

          When a duplicate ACK is seen by the sender, it infers 

that the other side must have received a packet out of order. 

Delays on different paths could be different thus; the missing 

packets may be delivered. So wait for “some” number of 

duplicate ACKs before resending data. This number is 

usually 3. 

 

 

    

 

 

 

 

 

 

 

 

 

 
Figure 1:Fast Retransmit 

Generally, fast retransmit eliminates about half the coarse-

grain timeouts. This yields roughly a 20% improvement in 

throughput. 

 

Problem : The problem with Tahoe is that it  take a complete 

timeout interval to  detect a packet loss and in fact, in most  

implementations it takes even longer  because of the coarse 

grain timeout. Also since it doesn‟t send immediate  ACK‟s,  

it   sends  cumulative  acknowledgements, therefore it 

follows  a „go back n „ approach. Thus every time a packet is 

lost it waits for a timeout and the pipeline is emptied. This 

offers a major cost in high bandwidth delay product links. 

 

           Thus Due to automatic set back to slow start mode of 

operation with initial congestion window of one every time 

packet loss is detected we see TCP Tahoe does not prevent 

the communication link from going empty. Hence this may 

have high cost in high bandwidth product links. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                               FIGURE 2: TCP TAHOE THROUGHPUT
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You can see the operation of TCP Tahoe clearly from the 

above figure:  

1. At approximately time 0, TCP Tahoe starts and it is in the 

slow start mode: the congestion window size increases 

exponentially  

2. At approximately time 5, packet loss is       detected.  

TCP marks SSThresh = 25 (approximately) and begins 

another slow start  

3. When it reaches CWND = 25 (approximately), the 

CWND increases linearly - here TCP Tahoe enters the 

congestion avoidance mode  

4. At approximately time 19, TCP Tahoe detects packet loss 

and begins a slow start.  

      SSThresHold is approximately 22. 

TCP begins another slow start and so on. 

 

      B.   TCP RENO  

             This Reno retains the basic principle of Tahoe, 

such as slow starts and the coarse grain re-transmit timer. 

However it adds some intelligence over it so that lost 

packets are detected earlier and the pipeline is not emptied 

every time a packet is lost. Reno requires that we receive 

immediate acknowledgement whenever a segment is 

received. The logic behind  this is that whenever we 

receive a duplicate acknowledgment, then this duplicate 

acknowledgment could have been received if the next 

segment in sequence expected, has been delayed in the 

network and the segments reached there out of order or 

else that the packet is lost. If we receive a number of 

duplicate acknowledgements then that means that 

sufficient time has passed and even if the segment had 

taken a longer path, it should have gotten to the receiver 

by now. There is a very high probability that it was lost. 

So Reno suggest an algorithm called „Fast Re-Transmit‟. 

Whenever we receive 3 duplicate ACK‟s we take it as a 

sign that the segment was lost, so we re-transmit the 

segment without waiting for timeout. Thus we manage to 

re-transmit the segment with the pipe almost full. 

Another modification that RENO makes is in that after a 

packet loss, it does not reduce the congestion window to 

1. Since this empties the pipe. It enters into a algorithm 

which we call „Fast-Re-Transmit‟. The basic algorithm is 

presented as under. 

1) Each time we receive 3 duplicate ACK‟s we take that 

to mean that the segment was lost and we re-transmit the 

segment immediately and enter „Fast-Recovery‟. 

2) Set SSthresh to half the current window size and also 

set CWD to the same value. 

3) For each duplicate ACK receive increase CWD by one. 

If the increase CWD is greater than the amount of data in 

the pipe then transmit a new segment else wait. If there 

are „w‟ segments in the window and one is lost, the we 

will receive (w-1) duplicate ACK‟s. Since CWD is 

reduced to W/2, therefore half a window of data is 

acknowledged before we can send a new segment. Once 

we retransmit a segment, we would have to wait for at 

least one RTT before we would receive a fresh 

acknowledgement. Whenever we receive a fresh ACK we 

reduce the CWND to SSthresh. If we had previously 

received (w-1) duplicate ACK‟s then at this point we 

should have exactly w/2 segments in the pipe which is 

equal to what we set the CWND to be at the end of fast 

recovery. Thus we don‟t empty the pipe, we just reduce 

the flow. We continue with congestion avoidance phase of 

Tahoe after that. 
 

 

 

 

 

 

 

 

FIGURE 3 TCP RENO THROUGHPUT 

Problems: Reno performs very well over TCP when                                                               

the packet losses are small. But when we have multiple 

packet losses in one window then RENO doesn‟t perform 

too well and its performance is almost the same as Tahoe 

under conditions of high packet loss. The reason is that it 

can only detect a single packet loss. If there is multiple 

packet drop then the first info about the packet loss comes 

when we receive the duplicate ACK‟s. But the 

information about the second packet which was lost will 

come only after the ACK for the retransmitted first 

segment reaches the sender after one RTT. Also it is 

possible that the CWD is reduced twice for packet losses 

which  occurred in one window. Suppose we  send 

packets 1,2,3,4,5,6,7,8,9 in that  order. Suppose packets 1, 

and 2 are lost.  The ACK‟s generated by 2,4,5 will cause 

the re-transmission of 1 and the  CWD is reduced to 7. 

Then when we receive ACK for 6,7,8,9 our CWD is 

sufficiently large to allow to us to send 10,11. When the 

re-transmitted segment 1 reaches the receiver we get a 

fresh ACK and we exit fast-recovery and set CWD to 4. 

Then we get two more ACK‟s for 2(due to 10,11) so once 

again  we enter fast-retransmit and re-transmit  2 and then 

enter fast recovery. Thus  when we exit fast recovery for 

the second time our window size is set to 2. 

C.  TCP NEW RENO 

                 TCP NewReno is same as the TCP Reno only 

difference between the TCP NewReno and TCP Reno is 
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that TCP NewReno can handle multiple packet loss 

without coming of fast recovery phase. 

TCP New Reno Algorithm  

The Idea: If the sender remembers the number of the last 

segment that was sent before entering the Fast Retransmit 

phase then it can deal with a situation when a “new” ACK 

(which is not duplicate ACK) does not cover the last 

remembered segment (“partial ACK”) This is a situation 

when more packets were lost before entering the Fast 

Retransmit. After discovering such situation the sender 

will retransmit the new lost packet too and will stay at the 

Fast Recovery stage. The sender will finish the Fast 

Recovery stage when it will get ACK that covers last 

segment sent before the Fast Retransmit 

Algorithm 

[1] Set ssthresh to max (FlightSize / 2, 2*MSS) 

(FlightSize is number of unacknowledged packet) 

[2]    Record to “Recovery” variables the highest sequence 

number transmitted 

[3] Retransmit the lost segment and set cwnd to ssthresh 

+ 3*MSS. 

[4] The congestion window is increased by the number of 

segments (three) that were sent and buffered by the 

receiver 

[5] For each additional duplicate ACK received, 

increment cwnd by MSS. 

[6] Thus, the congestion window reflects the additional 

segment that has left the network. 

[7] Transmit a segment, if allowed by the new value of 

cwnd and the receiver's advertised window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 TCP NEW RENO THROUGHPUT 

 

D.   TCP VEGAS  

       TCP Vegas was originally proposed by Brakmo and 

had several new features in it. One  of the most important 

differences between TCP Vegas and  TCP Reno is its 

congestion avoidance scheme. While TCP Reno (and its 

variants like NewReno ) rely on  packet loss detection to 

detect network congestions, TCP  Vegas uses a 

sophisticated bandwidth estimation scheme to  proactively 

gauge network congestion. TCP Vegas varies it  

congestion window (cwnd) using the following algorithm 

Record sending time of every packet and the time of ACK 

reception when it receives a duplicate ACK, Vegas checks 

to see if the RTT is greater than timeout. If it is, then 

without waiting for the third duplicate ACK, it 

immediately retransmits the packet. 

When a non-duplicate ACK is received, if it is the first or 

second ACK after a  retransmission, Vegas again checks 

to see if the RTT is greater than timeout. If it is, then 

Vegas retransmits  the packet. 

 

Note: Only decrease congestion window for current 

window size, not for previous window size. 

Congestion Avoidance: 

BaseRTT = min RTT ever 

Exp Throughput = window size / BaseRTT 

Actual Rate = segment size / measured RTT of 

corresponding RTT 

Diff = Exp Throughput – Actual Rate 

Diff < α: increase window linearly; 

Diff > β: decrease window linearly; 

α < Diff < β: keep window size unchanged. 

The sender defines three thresholds α, β and γ we set α = 

2, β = 4 and γ = 1 

 

Slow-Start: 

Expo growth every other RTT, instead of every RTT as in 

Reno. 

Compare Exp with Actual as in congestion avoidance. 

When Actual < γ, Vegas changes from slow start to linear 

increase/decrease. 

Result: 

Smooth window size, no saw tooth. 

40% – 70% throughput improvement. 

Problems:  

1. Vegas has good performances when the queue 

sizes at intermediate routers are large; it enables 

a full utilization of the link while it keeps the 

sending rate smoother. However, when the 

available bandwidth is not sufficiently  large, 

Vegas has the same behaviour as Reno and does 
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not manage to make efficient  use of its new 

mechanism for congestion detection.  

2. Sensitive to RTT estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5 TCP VEGAS THROUGHPUT 

 

1) COMPARISION OF TCP CONTROL ALGORITHMS 

 

 

 Algorithm 

TCP TAHOE 1. Slow Start 

2. Congestion Avoidance 

Fast Recovery 

TCP RENO 1. Slow Start 

2. Congestion Avoidance 

3. Fast Recovery 

Fast Retransmission 

TCP NEW 

RENO 

1. Slow Start 

2. Congestion Avoidance 

3. Fast Recovery 

4. Fast-Retransmit 

TCP NewReno can handle multiple 

packet loss without coming out of fast 

recovery phase. 

TCP VEGAS 1. Slow Start 

2. Packet loss detection 

3. Detection of available bandwidth 

 

2) COMPARISION OF TCP CONTROL ALGORITHMS 

WRT PROBLEMS. 

 

 

 

 

 Problems 
TCP 

TAHOE 

Every time a packet is lost it waits 

for the timeout and then retransmits 

the packet. It reduces the size of 

congestion window to 1 just because 

of 1 packet loss, this inefficiency 

cost a lost in high bandwidth delay 

product links 

TCP 

RENO 

TCP Reno is helpful when only 1 

packet is lost, in case of multiple 

packet loss it acts as Tahoe. Then 

evolved TCP New Reno which is a 

modification of TCP Reno and deals 

with multiple packets loss. 

TCP NEW 

RENO 

New-Reno suffers from the fact that  

its take one RTT to detect each 

packet  loss. When the ACK for the 

first retransmitted segment is 

received only  then can we deduce 

which other segment was lost. 

TCP 

VEGAS 

Vegas has good performances when 

the queue sizes at intermediate 

routers are large; it enables a full 

utilization of the link while it keeps 

the sending rate smoother. However, 

when the available  bandwidth is not 

sufficiently large, Vegas has the 

same behaviour  as Reno and does 

not manage to make efficient  use of 

its new mechanism for  congestion  

detection. Sensitive to RTT 

estimation. 

 

 

3) COMPARISION OF TCP CONTROL ALGORITHMS 

WRT NUMBER OF PACKET 

SENT,RECEIVED,DROPED AND ACKNOWLEDGED. 

. 

 

 

 

 

 

 No of 

Packet 

Sent 

No Of 

Packet 

Received 

No of 

Packet 

Drop 

No of 

ACK 

TCP 

TAHOE 

9736 9736 23 43812 

TCP 

RENO 

10264 10264 23 46188 

Table 1: Comparisons of TCP Algorithm 

Table 2: Comparisons of TCP Algorithm  wrt 

Problems 

 

Table 3:  Comparisons of TCP Algorithm  WRT 

PACKET SENT,PACKET DROPED,PACKET 

RECEIVED AND ACK 
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TCP 

NEW 

RENO 

9796 9796 25 44082 

TCP 

VEGAS 

11624 11624 3 52308 

 

 
III. CONCLUSION 

 

In this paper, we have evaluated the performance 

characteristics of various TCP congestion control schemes 

under the wired network conditions with bottleneck end-

to-end link capacities. We can conclude based on 

throughput calculation that TCP vegas gives highest 

performance as it can change its congestion window based 

on network traffic situation. 
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