
Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 207

An Introduction to Single System Image (SSI) Cluster

Technique

 Tarun Kumawat [CSE] , JECRC UDML College of Engineering. Kukas, Jaipur, Rajasthan, India
1

Sandeep Tomar [CSE] , Arya College of Engineering & I.T. Kukas, Jaipur, Rajasthan, India
2

 Mohit Gupta [CSE] , Arya College of Engineering & I.T. Kukas, Jaipur, Rajasthan, India
3

1
tarun.kumawat04@gmail.com

2
sandeeptomar12@yahoo.com

3
mohit15.1990@gmail.com

Abstract-Cluster computing is not a new area of computing.

It is, however, evident that there is a growing interest in its

usage in all areas where applications have traditionally used

parallel or distributed computing platforms. A Single System

Image (SSI) is the property of a system that hides the

heterogeneous and distributed nature of the available

resources and presents them to users and applications as a

single unified computing resource. SSI can be enabled in

numerous ways, this range from those provided by extended

hardware through to various software mechanisms. SSI

means that users have a globalised view of the resources

available to them irrespective of the node to which they are

physically associated.

Keywords: Cluster SSI, SCO UnixWare, GLUnix, MOSIX

I. INTRODUCTION

 Single System Image (SSI) is the property of a

system that hides the heterogeneous and distributed

nature of the available resources and presents them to

users and applications as a single unified computing

resource. SSI can be enabled in numerous ways, this

range from those provided by extended hardware through

to various software mechanisms. SSI means that users

have a globalised view of the resources available to them

irrespective of the node to which they are physically

associated. Furthermore, SSI can ensure that a system

continues to operate after some failure (high availability)

as well as ensuring that the system is evenly loaded and

providing communal multiprocessing (resource

management and scheduling).

SSI design goals for cluster-based systems are mainly

focused on complete transparency of resource

management, scalable performance, and system

availability in supporting user applications [1][2][3][5][7].

A SSI can be defined as the illusion [1][2], created by

hardware or software, that presents a collection of

resources as one, more powerful unified resource.

II. SERVICES AND BENEFITS

The key services of a single-system image cluster include

the following [1][3][4]:

 Single entry point: A user can connect to the

cluster as a virtual host (like telnet

beowulf.myinstitute.edu), although the cluster

may have multiple physical host nodes to serve

the login session. The system transparently

distributes user’s connection requests to different

physical hosts to balance load.

 Single user interface: The user should be able to

use the cluster through a single GUI. The

interface must have the same look and feel than

the one available for workstations (e.g., Solaris

OpenWin or Windows NT GUI).

 Single process space: All user processes, no

matter on which nodes they reside, have a unique

cluster-wide process id. A process on any node

can create child processes on the same or

different node (through a UNIX fork). A process

should also be able to communicate with any

other process (through signals and pipes) on a

remote node. Clusters should support globalised

process management and allow the management

and control of processes as if they are running on

local machines.

 Single memory space: Users have an illusion of a

big, centralised main memory, which in reality

may be a set of distributed local memories.

Software DSM approach has already been used

to achieve single memory space on clusters.

Another approach is to let the compiler distribute

the data structure of an application across

multiple nodes. It is still a challenging task to

develop a single memory scheme that is efficient,

platform independent, and able to support

sequential binary codes.

 Single I/O space (SIOS): This allows any node to

perform I/O operations on local or remotely

located peripheral or disk device. In this SIOS

design, disks associated to cluster nodes,

network-attached RAIDs, and peripheral devices

form a single address space.

 Single file hierarchy: On entering into the

system, the user sees a single, huge file-system

image as a single hierarchy of files and

directories under the same root directory that

transparently integrates local and global disks

and other file devices. Examples of single file

hierarchy include NFS, AFS, xFS, and Solaris

MC Proxy.

A

mailto:tarun.kumawat04@gmail.com
mailto:sandeeptomar12@yahoo.com
mailto:mohit15.1990@gmail.com

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 208

 Single virtual networking: This means that any

node can access any network connection

throughout the cluster domain even if the

network is not physically connect to all nodes in

the cluster. Multiple networks support a single

virtual network operation.

 Single job-management system: Under a global

job scheduler, a user job can be submitted from

any node to request any number of host nodes to

execute it. Jobs can be scheduled to run in either

batch, interactive, or parallel modes. Examples of

job management systems for clusters include

GLUnix, LSF, and CODINE.

 Single control point and management: The entire

cluster and each individual node can be

configured, monitored, tested and controlled

from a single window using single GUI tools,

much like an NT workstation managed by the

Task Manger tool.

 Checkpointing and Process Migration:

Checkpointing is a software mechanism to

periodically save the process state and

intermediate computing results in memory or

disks. This allows the roll back recovery after a

failure. Process migration is needed in dynamic

load balancing among the cluster nodes and in

supporting Checkpointing. Figure 1 shows the

functional relationships among various key

middleware packages.

These middleware packages are used as interfaces

between user applications and cluster hardware and OS

platforms. They support each other at the management,

programming, and implementation levels.

Figure 1. The relationship between middleware modules [3].

The most important benefits of SSI include the following

[1]:

 It provides a simple, straightforward view of all

system resources and activities, from any node in

the cluster.

 It frees the end-user from having to know where

in the cluster an application will run.

 It allows the use of resources in a transparent

way irrespective of their physical location.

 It lets the user work with familiar interface and

commands and allows the administrator to

manage the entire cluster as a single entity.

 It offers the same command syntax as in other

systems and thus reduces the risk of operator

errors, with the result that end-users see an

improved performance, reliability and higher

availability of the system.

 It allows to centralise/decentralise system

management and control to avoid the need of

skilled administrators for system administration.

 It greatly simplifies system management and thus

reduced cost of ownership.

 It provides location-independent message

communication.

 It benefits the system programmers to reduce the

time, effort and knowledge required to perform

task, and allows current staff to handle larger or

more complex systems.

 It promotes the development of standard tools

and utilities.

III. SSI LAYERS/LEVELS

The two important characteristics of SSI [1][2] are:

1. Every SSI has a boundary,

2. SSI support can exist at different levels within a system

— one able to be built on another.

SSI can be implemented in one or more of the following

levels:

 Hardware,

 Operating System (so called underware [5]),

 Middleware (runtime subsystems),

 Application.

A good SSI is usually obtained by a co-operation between

all these levels as a lower level can simplify the

implementation of a higher one.

A. Hardware Level

Systems such as Digital/Compaq Memory Channel [8]

and hardware Distributed Shared Memory (DSM) [8]

offer SSI at hardware level and allow the user to view a

cluster as a shared-memory system. Digital's Memory

Channel is designed to provide a reliable, powerful and

efficient clustering interconnect. It provides a portion of

global virtual shared memory by mapping portions of

remote physical memory as local virtual memory (called

reflective memory).

Memory Channel consists of two components: a PCI

adapter and a hub. Adapters can also be connected

directly to another adapter without using a hub. The host

interfaces exchange heartbeat signals and implement flow

control timeouts to detect node failure or blocked data

transfers. The link layer provides error detection through a

32 bit CRC generated and checked in hardware. Memory

Channel uses point-to-point, full-duplex switched 8x8

crossbar implementation.

To enable communication over the Memory Channel

network, applications map pages as read- or write-only

into their virtual address space. Each host interface

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 209

contains two page control tables (PCT), one for write and

one for read mappings. For read-only pages, a page is

pinned down in local physical memory. Several page

attributes can be specified: receive enable, interrupt on

receive, remote read etc. If a page is mapped as write-

only, a page table entry is created for an appropriate page

in the interface 128 Mbytes of PCI address space. Page

attributes can be used to store a local copy of each packet,

request acknowledgement message from receiver side for

each packet, and define the packets as broadcast or point-

to-point packets. Broadcasts are forwarded to each node

attached to the network. If a broadcast packet enters a

crossbar hub, the arbitration logic waits until all output

ports are available. Nodes, which have mapped the

addressed page as a readable area, store the data in their

local pinned down memory region. All other nodes simply

ignore the data. Therefore once the data regions are

mapped and set up, simple store instructions transfer data

to remote nodes, without OS intervention. Besides this

basic data transfer mechanism, Memory Channel supports

a simple remote read primitive, a hardware-based barrier

acknowledges, and a fast lock primitive. To ensure correct

behaviour, Memory Channel implements a strict in-order

delivery of written data. A write invalidates cache entries

on the reader side, thus providing cluster-wide cache

coherence.

Digital provides two software layers for Memory

Channel: the Memory Channel Services and Universal

Message Passing (UMP). The first is responsible for

allocating and mapping individual memory page. UMP

implements a user-level library of basic message passing

mechanisms. It is mainly used as a target for higher

software layers, such as MPI, PVM or HPF. Both layers

have been implemented for the Digital UNIX and the

Windows NT operating systems. Memory Channel

reduces communication to the minimum, just simple store

operations. Therefore, latencies for single data transfers

are very low. This also enables the Memory Channel to

reach the maximal sustained data rate of 88 Mbytes/s with

relative small data packets of 32 bytes. The largest

possible configuration consists out of 8 12-CPU Alpha

server nodes, resulting in a 96-CPU cluster.

B. Operating System Level

Cluster operating systems support an efficient execution

of parallel applications in an environment shared with

sequential applications. A goal is to pool resources in a

cluster to provide better performance for both sequential

and parallel applications. To realise this goal, the

operating system must support gang scheduling of parallel

programs, identify idle resources in the system (such as

processors, memory, and networks), and offer globalised

access to them. It should optimally support process

migration to provide dynamic load balancing as well as

fast inter-process communication for both the system and

user-level applications. The OS must make sure these

features are available to the user without the need for

additional system calls or commands. OS kernel

supporting SSI include SCO UnixWare NonStop Clusters

[5][6], Sun Solaris-MC [9], GLUnix [11], and MOSIX

[12].

1) SCO UnixWare

UnixWare NonStop Clusters is SCO's high availability

software. It significantly broadens hardware support

making it easier and less expensive to deploy the most

advanced clustering software for Intel systems. It is an

extension to the UnixWare operating system where all

applications run better and more reliably inside a Single

System Image (SSI) environment that removes the

management burden. It features standard IP as the

interconnect, removing the need for any proprietary

hardware.

The UnixWare kernel has been modified via a series of

modular extensions and hooks to provide: single cluster-

wide file-system view; transparent cluster-wide device

access; transparent swap-space sharing; transparent

cluster-wide IPC; high performance inter-node

communications; transparent cluster-wide process

migration; node down cleanup and resource failover;

transparent cluster-wide parallel TCP/IP networking;

application availability; cluster-wide membership and

cluster time-sync; cluster system administration; and load

levelling.

UnixWare NonStop Clusters architecture offers built-in

support for application failover using an "n + 1" approach.

With this approach, the backup copy of the application

may be restarted on any of several nodes in the cluster.

This allows one node to act as a backup node for all other

cluster nodes.

UnixWare NonStop Clusters also supports active process

migration, which allows any application process to be

moved to another node between instruction steps. This

allows continuation without disruption to the application.

Active process migration allows dynamic removal and

addition of nodes within the cluster.

With the Single System Image (SSI) capability of

UnixWare NonStop Clusters, both applications and users

view multiple nodes as a single, logical system. SSI also

provides automatic process migration and dynamic load

balancing. Depending on the workload and available

resources in the cluster, the system automatically

reassigns processes among available nodes, delivering

optimal overall performance. The cluster offers a single

UNIX system name space and appears to the application

as a very large n-way SMP server. The cluster services

maintain the standard service call interface, so upper

levels of the operating system do not need to be changed.

Applications access clustered services through standard

UNIX system libraries, which in turn access clustered

services through the service-call interface. Applications

do not need to be cluster aware and may run unmodified

in the cluster.

The cluster service determines whether a request can be

handled locally or must be forwarded to another node. If

the request is passed to another node, it uses an internode

communication system over ServerNet to communicate to

the service peer on another node. The request is then

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 210

handled by the standard UNIX system service on the

targeted node.

2) Sun Solaris MC

Solaris MC is a prototype extension of the single node

Solaris Kernel. It provides single system image and high

availability at the kernel level. Solaris MC is implemented

through object-oriented techniques. It extensively uses the

object-oriented programming language C++, the standard

COBRA object model and its Interface Definition

Language.

Solaris MC uses a global file system called Proxy File

System (PXFS). The main features include single system

image, coherent semantics, and high performance. The

PXFS makes file accesses transparent to process and file

locations. PXFS achieves this single system image by

intercepting file-access operations at the vnode/VFS

interface. When a client node performs a VFS/vnode

operation, Solaris MC proxy layer first converts the

VFS/vnode operation into an object invocation, which is

forwarded to the node where the file resides (the server

node). The invoked object then performs a local

VFS/vnode operation on the Solaris file system of the

server node. This implementation approach needs no

modification of the Solaris kernel or the file system.

PXFS uses extensive caching on the clients to reduce

remote object invocations. PXFS uses a token-based

coherency protocol to allow a page to be cached read-only

by multiple nodes or read-write by a single node.

Solaris MC provides a single process space by adding a

global process layer on top of Solaris kernel layer. There

is a node manager for each node and a virtual process

(vproc) object for each local process. The vproc maintains

information of the parent and children of each process.

The node manager keeps two lists: the available node list

and local process list, including migrated ones. When a

process migrates to another node, a shadow vproc is still

kept on the home node. Operations received by the

shadow vproc are forwarded to the current node where the

process resides.

Solaris MC provides a single I/O subsystem image with

uniform device naming. A device number consists of the

node number of the device, as well as the device type and

the unit number. A process can access any device by

using this uniform name as if it were attached to the local

node, even if it is attached to a remote node.

Solaris MC ensures that existing networking applications

do not need to be modified and see the same network

connectivity, regardless of which node the application

runs on. Network services are accessed through a service

access point (SAP) server. All processes go to the SAP

server to locate in which node a SAP is on. The SAP

server also ensures that the same SAP is not

simultaneously allocated to different nodes. Solaris MC

allows multiple nodes to act as replicated SAP server for

network services.

3) GLUnix

Another way for the operating system to support a SSI is

to build a layer on top of the existing operating system

and to perform global resource allocations. This is the

approach followed by GLUnix from Berkeley [11]. This

strategy makes the system easily portable and reduces

development time.

GLUnix is an OS layer designed to provide support for

transparent remote execution, interactive parallel and

sequential jobs, load balancing, and backward

compatibility for existing application binaries. GLUnix is

a multi-user system implementation at the user level so

that it can be easily ported to a number of different

platforms. It is built as a protected, user-level library

using the native system services as a building block.

GLUnix aims to provide cluster-wide namespace and uses

Network PIDs (NPIDs) and Virtual Node Numbers

(VNNs). NPIDs are globally unique process identifiers for

both sequential and parallel programs throughout the

system. VNNs are used to facilitate communications

among processes of a parallel program. A suite of user

tools for interacting and manipulating NPIDs and VNNs

are supported.

GLUnix is implemented completely in the user level and

does not need any kernel modification, therefore it is easy

to implement. GLUnix relies on a minimal set of standard

features from the underlying system, which are present in

most commercial operating systems. So it is portable to

any operating system that supports inter-process

communication, process signalling, and access to load

information. The new features needed for clusters are

invoked by procedure calls within the application's

address space. There is no need to cross hardware

protection boundary, no need for kernel trap or context

switching. The overhead for making system calls is

eliminated in GLUnix. Using shared-memory segments or

interprocess communication primitives can do the co-

ordination of the multiple copies of GLUnix, which are

running on multiple nodes.

The main features provided by GLUnix include: co-

scheduling of parallel programs; idle resource detection,

process migration, and load balancing; fast user-level

communication; remote paging; and availability support.

4) MOSIX

MOSIX [12] is another software package specifically

designed to enhance the Linux kernel with cluster

computing capabilities. The core of MOSIX are adaptive

(on-line) load-balancing, memory ushering and file I/O

optimisation algorithms that respond to variations in the

use of the cluster resources, e.g., uneven load distribution

or excessive disk swapping due to lack of free memory in

one of the nodes. In such cases, MOSIX initiates process

migration from one node to another, to balance the load,

or to move a process to a node that has sufficient free

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 211

memory or to reduce the number of remote file I/O

operations.

MOSIX operates silently and its operations are

transparent to the applications. This means that you can

execute sequential and parallel applications just like you

would do in an SMP. You need not care about where your

process is running, nor be concerned what the other users

are doing. Shortly after the creation of a new process,

MOSIX attempts to assign it to the best available node at

that time. MOSIX then continues to monitor the new

process, as well as all the other processes, and will move

it among the nodes to maximise the overall performance.

All this is done without changing the Linux interface. This

means that you continue to see (and control) all your

processes as if they run on your node. The algorithms of

MOSIX are decentralised – each node is both a master for

processes that were created locally, and a server for

(remote) processes, that migrated from other nodes. This

means that nodes can be added or removed from the

cluster at any time, with minimal disturbances to the

running processes. Another useful property of MOSIX is

its monitoring algorithms, which detect the speed of each

node, its load and free memory, as well as IPC and I/O

rates of each process. This information is used to make

near optimal decisions where to place the processes.

The system image model of MOSIX is based on the

home-node model, in which the entire user's processes

seem to run at the user's login-node. Each new process is

created at the same site(s) as its parent process. Processes

that have migrated interact with the user's environment

through the user's home-node, but where possible, use

local resources. As long as the load of the user's login-

node remains below a threshold value, all the user's

processes are confined to that node. However, when this

load rises above a threshold value, then some processes

may be migrated (transparently) to other nodes.

The Direct File System Access (DFSA) provision extends

the capability of a migrated process to perform some I/O

operations locally, in the current node. This provision

reduces the need of I/O-bound processes to communicate

with their home node, thus allowing such processes (as

well as mixed I/O and CPU processes) to migrate more

freely among the cluster's node, e.g., for load balancing

and parallel file and I/O operations. Currently, the

MOSIX File System (MFS) meets the DFSA standards.

MFS makes all directories and regular files throughout a

MOSIX cluster available from all nodes, while providing

absolute consistency as files are viewed from different

nodes, i.e., the consistency is as if all file accesses were

done on the same node.

C. Middleware Level

Middleware, a layer that resides between OS and

applications, is one of the common mechanisms used to

implement SSI in clusters. They include cluster file

system, programming environments such as PVM [13],

job-management and scheduling systems such as

CODINE [14] and Condor [15], cluster-enabled Java

Virtual Machine (JVM) such as JESSICA [18]. SSI

offered by cluster file systems makes disks attached to

cluster nodes

appear as a single large storage system, and ensure that

every node in the cluster has the same view of the data.

Global job scheduling systems manage resources, and

enable the scheduling of system activities and execution

of applications while offering high availability services

transparently. Cluster enabled JVM allows execution of

Java threads-based applications on clusters without any

modifications.

CODINE is a resource-management system targeted to

optimise utilisation of all software and hardware resources

in a heterogeneous networked environment [14]. It is

evolved from the Distributed Queuing System (DQS)

created at Florida State University. The easy-to-use

graphical user interface provides a single-system image of

all enterprise-wide resources for the user and also

simplifies administration and configuration tasks.

The CODINE system encompasses four types of

daemons. They are the CODINE master daemon, the

scheduler daemon, the communication daemons and the

execution daemons. The CODINE master daemon acts as

a clearinghouse for jobs and maintains the CODINE

database. Periodically the master receives information

about the host load values in the CODINE cluster by the

CODINE execution daemons running on each machine.

Jobs,

submitted to the CODINE system, are forwarded to the

CODINE master daemon and then spooled to disk. The

scheduler daemon is responsible for the matching of

pending jobs to the available resources. It receives all

necessary information from the CODINE master daemon

and returns the matching list to the CODINE master

daemon which in turn dispatches jobs to the CODINE

execution daemons.

CODINE master daemon runs on the main server and

manages the entire CODINE cluster. It collects all

necessary information, maintains and administers the

CODINE database. The database contains information

about queues, running and pending jobs and the available

resources in the CODINE cluster. Information to this

database is periodically updated by the CODINE

execution daemons.

The CODINE master daemon has a critical function, as

the system will not operate without this daemon running.

To eliminate this potential point of failure, CODINE

provides a shadow master functionality. Should the

CODINE master daemon fail to provide service, a new

CODINE master host will be selected and another

CODINE master daemon will automatically be started on

that new host. All CODINE ancillary programs providing

the user or administrator interface to CODINE directly

contacts the CODINE master daemon via a standard TCP

port to forward their requests and to receive an

acknowledgement or the required information.

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 212

The CODINE scheduler daemon is responsible for the

mapping of jobs to the most suitable queues. Jobs are

submitted to the CODINE master daemon together with a

list of requested resources. A job that cannot be

dispatched immediately waits in a pending queue until the

CODINE scheduler daemon decides the requested

resources for this job are available. The result of the

mapping is communicated back to the CODINE master

daemon to update the database. The CODINE master

daemon notifies the CODINE execution daemon on the

corresponding machine to start the job.

The CODINE execution daemon runs on every machine

in the CODINE cluster where jobs can be executed. It

reports periodically the status of the resources on the

workstation to the CODINE master daemon. The

CODINE execution daemon is also responsible for

starting and stopping the jobs. For each job, the CODINE

execution daemon starts a subordinate shepherd process,

which is responsible for running and monitoring its job.

One or more CODINE communication daemons have to

run in every CODINE cluster .These daemons are

responsible for the communication between the other

CODINE daemons. This allows asynchronous

communication between the various CODINE daemons,

speeding up the system and increasing efficiency. The

communication daemons control the whole

communication via a standard TCP port.

D. Application Level

Finally, applications can also support SSI. The

application-level SSI is the highest and, in a sense, most

important because this is what the end-user sees. At this

level, multiple cooperative components of an application

are presented to the user as a single application. For

instance, a GUI based tool such as PARMON [15] offers

a single window representing all the resources or services

available. The Linux Virtual Server [17] is a scalable and

high availability server built on a cluster of real servers.

The architecture of the cluster is transparent to end-users

as all they see a single virtual server. All other cluster-

aware scientific and commercial applications (developed

using APIs such as MPI) hide the existence of multiple

interconnected computers and co-operative software

components, and present themselves as if running on a

single system.

The Linux Virtual Server (LVS) [17] directs network

connections to the different servers according to

scheduling algorithms and makes parallel services of the

cluster to appear as a virtual service on a single IP

address. Linux Virtual Server extends the TCP/IP stack of

Linux kernel to supports three IP load balancing

techniques: NAT, IP tunnelling, and direct routing. It also

provides four scheduling algorithms for selecting servers

from cluster for new connections: round-robin, weighted

round-robin, least-connection and weighted Least-

Connection. Client applications interact with the cluster as

if it were a single server. The clients are not affected by

interaction with the cluster and do not need modification.

Scalability is achieved by transparently adding or

removing a node in the cluster. High availability is

provided by detecting node or daemon failures and

reconfiguring the system appropriately.

Linux Virtual Server is a three-tier architecture.

 Load Balancer is the front end to the service as

seen by the outside world. The load balancer

directs network connections from clients who

know a single IP address for services, to a set of

servers that actually perform the work.

 Server Pool consists of a cluster of servers that

implement the actual services, such as Web, Ftp,

mail, DNS, and so on.

 Backend Storage provides the shared storage for

the servers, so that it is easy for servers to keep

the same content and provide the same services.

The load balancer handles incoming connections using IP

load balancing techniques. Load balancer selects servers

from the server pool, maintains the state of concurrent

connections and forwards packets, and all the work is

performed inside the kernel, so that the handling overhead

of the load balancer is low. The load balancer can handle

much larger number of connections than a general server,

therefore a load balancer can schedule a large number of

servers and it will not be a bottleneck of the whole

system. Cluster monitor daemons run on the load balancer

to monitor the health of server nodes. If a server node

cannot be reached by ICMP ping or there is no response

of the service in the specified period, the monitor will

remove or disable the server in the scheduling table of the

load balancer. The load balancer will not schedule new

connections to the failed one and the failure of server

nodes can be masked. In order to prevent the load

balancer from becoming a single-point-of-failure, a

backup of the load balancer is set-up. Two heartbeat

daemons run on the primary and the backup, they

heartbeat the health message through heartbeat channels

such as serial line and UDP periodically. When the

heartbeat daemon on the backup cannot hear the health

message from the primary in the specified time, it will use

ARP spoofing to take over the virtual IP address to

provide the load balancing service. When the primary

recovers from its failure, then the primary becomes the

backup of the functioning load balancer, or the daemon

receives the health message from the primary and releases

the virtual IP address, and the primary will take over the

virtual IP address. The failover or the take-over of the

primary will cause the established connection in the state

table lost, which will require the clients to send their

requests again.

E. Pros and Cons of Each Level

Each level of SSI has its own pros and cons. The

hardware-level SSI can offer the highest level of

transparency, but due to its rigid architecture, it does not

offer the flexibility required during the extension and

enhancement of the system. The kernel-level approach

offers full SSI to all users (application developers and

end-users). However, kernel-level cluster technology is

expensive to develop and maintain, as its market-share

Volume III, Issue IV, April 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 213

is/will be probably limited and it is difficult to keep pace

with technological innovations emerging into

mass-market operating systems.

An application-level approach helps realise SSI partially

and requires that each application be developed as SSI-

aware separately. A key advantage of application-level

SSI compared to the kernel-level is that it can be realised

in stages and the user can benefit from it immediately.

Whereas, in the kernel-level approach, unless all

components are specifically developed to support SSI,

cannot be used or released to the market. Due to this,

kernel-level approach appears as a risky and economically

non-viable approach. The middleware approach is a

compromise between the other two mechanisms used to

provide SSI. In some cases, like in PVM, each application

needs to be implemented using special APIs on a case by-

case basis. This means, there is a higher cost of

implementation and maintenance, otherwise the user

cannot get any benefit from the cluster. The arguments on

the, so-called, ―underware‖ versus middleware level of

SSI are presented in [5].

IV CONCLUSIONS

SSI can greatly enhance the acceptability and usability of

clusters by hiding the physical existence of multiple

independent computers by presenting them as a single,

unified resource. SSI can be realised either using

hardware or software techniques, each of them have their

own advantages and disadvantages. The middleware

approach appears to offer an economy of scale compared

to other approaches although it cannot offer full SSI like

the OS approach. In any case, the designers of software

(system or application) for clusters must always consider

SSI (transparency) as one of their important design goals

in addition to scalable performance and enhanced

availability.

 REFERENCES

[1] R. Buyya (editor), High Performance Cluster

Computing: Architectures and Systems, Vol. 1, Prentice

Hall, NJ, USA, 1999.

[2] G.F. Pfister, In Search of Clusters, Second Edition,

Prentice Hall, NJ, USA, 1998.

[3] K. Hwang, H. Jin, E. Chow, C-L Wang, and Z. Xu,

Designing SSI Clusters with Hierarchical Checkpointing

and Single I/O Space, IEEE Concurrency, 7(1), January-

March, 1999.

[4] K. Hwang, and Z. Xu, Scalable Parallel Computing –

Technology, Architecture, Programming, WCB/McGraw-

Hill, USA, 1998.

[5] B. Walker and D. Steel, Implementing a Full Single

System Image UnixWare Cluster: Middleware vs.

Underware, Proceedings of the International Conference

on Parallel and Distributed Processing Techniques and

Applications (PDPTA'99), Las Vegas, USA, 1999.

[6] B. Walker and D. Steel, Implementing a Full Single

System Image UnixWare Cluster: Middleware vs

Underware, Proceedings of the International Conference

on Parallel and Distributed Processing Techniques and

Applications (PDPTA'99), USA, July 1999.

http://www.sco.com/products/clustering/nscwhtpaper/

[7] G. Popek and B. Walker (Ed.), The Locus Distributed

System Architecture, MIT Press, 1996

[8] Memory Channel,

http://www.digital.com/info/hpc/systems/symc.html

[9] Distributed Shared Memory:

http://www.cs.umd.edu/~keleher/dsm.html

[10] K. Shirriff, Y. Khalidi, V. Matena, and J. Auban,

Single-System Image: The Solaris MC Approach,

Proceedings of the International Conference on Parallel

and DistributedProcessing Techniques and Applications

(PDPTA'97), USA, July 1997.

[11] D. Ghormley, D. Petrou, S. Rodrigues, A. Vahdat

and T. Anderson, GLUnix: A Global Layer Unix for a

Network of Workstations, Journal of Software Practice

and Experience, John Wiley & Sons, USA, July 1998.

http://now.cs.berkeley.edu/Glunix/glunix.html

[12] A. Barak and O. La'adan, The MOSIX

Multicomputer Operating System for High Performance

Cluster Computing (ftp), Journal of Future Generation

Computer Systems, Elsevier Science Press, March 1998.

http://www.mosix.cs.huji.ac.il/

[13] A. Geist and V. Sunderam, PVM: A Framework for

Parallel Distributed Computing, Journal of Concurrency:

Practice and Experience, December 1990.

http://www.epm.ornl.gov/pvm/

[14] F. Ferstl, Job and Resource Management Systems,

High Performance Cluster Computing: Architectures and

Systems, Vol. 1, Prentice Hall, NJ, USA, 1999.

http://www.gridware.com/product/codine.htm

[15] M. Litzkow, M. Livny, and M. Mutka, Condor – A

Hunter of Idle Workstations, Proceedings of the 8th

International Conference of Distributed Computing

Systems, June 1988. http://www.cs.wisc.edu/condor/

[16] Rajkumar Buyya, PARMON: A Portable and

Scalable Monitoring System for Clusters, Journal of

Software: Practice & Experience, John Wiley & Sons,

USA, June 2000.

http://www.csse.monash.edu.au/~rajkumar/parmon/

[17] W. Zhang, Linux Virtual Servers for Scalable

Network Services, Ottawa Linux Symposium 2000,

Canada. http://www.LinuxVirtualServer.org/

[18] M. Ma, C. Wang and F. Lau, JESSICA: Java-

Enabled Single-System-Image Computing Architecture,

Journal of Parallel and Distributed Computing (to

appear), http://www.srg.csis.hku.hk/jessica.htm.

