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Abstract: Performance of wireless communication system the 

exact closed form expressions are obtained for the bit error 

probability of Nakagami fading channels for FSK in noise and 

interference environments the characteristics function method 

and closed form expression for the derivatives have been 

employed for analysis. The total decision variable for the noise 

and interference is utilized. The background noise is ignored 

into post detection combining is utilized to improve the bit 

error performance of FSK. The proposed receiving system has 

better performance.                                                                                                                                      
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I. INTRODUCTION 

he performance of digital communication systems are 

perturbed by AWGN, multipath fading and co-channel 

interference. Analysis of the performance of digital 

communication on fading channels in presence of noise and 

interference is of considerable interest of theoretical as well 

as practical research. The diversity techniques for digital 

communication have been over Rayleigh fading and 

Nakagami fading channels in presence of a single as well as 

large number of interferers described in detail [1] and 

reference there in using optical combining technique. The 

effect of co-channel interference and noise on the bit error 

probabilities in amplitude shift keying ASK [2] and binary 

phase shift keying BPSK [3-7] have been explained through 

explicit expression of signal to interference plus noise ratio 

(SINR). The closed form expression for bit-error probability 

of BPSK for asynchronous interference in Rayleigh fading 

environment is presented by Hamdi [8] The outage 

probability in Nakagami fading channel under Rayleigh 

interference is studied by Paris and Jimenez [9]. In all the 

above studies, they have considered the interferences with 

the noise background. The derivation of closed form 

expression for probability of error is quite complicated and 

approximate.  

In this paper, the performance evaluation of FSK 

and effect of noise and interference on Nakagami fading 

channel, FSK signal is considered independently at the 

receiver.  

Finally, the combined decision variable due to 

noise and interference is achieved. Hence, the combined 

probability of error due to noise and interference is derived. 

The exact closed form expression for probability of error 

using characteristics function method [10] for post detection 

combiner has been achieved. The probability of error 

depends on distribution of signal to noise ratio and 

distribution of the signal to interference ratio separately. 

Distribution of signal to interference plus noise has been 

neglected. Organization of paper is as follows. The system 

model is discussed in the section2. Section 3 contains the 

characteristic function method in detail. The derivation of 

closed form expression is presented in section 4. Numerical 

results are given in section 5 and finally section 6 contains 

the conclusion of the paper. 

 

II. SYSTEM MODEL 

Let us consider a diversity reception system over flat fading 

channel having L-correlated branches. The receiver employs 

symbol by symbol detection. The signal received on k
th

 

diversity branch in the symbol interval Tb can be 

represented by 
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  and   

 (2) 

 

Where and are the received signal containing noise and 

interference separately is complex  desired signal,  is 

the complex interfering random signal having zero mean 

and variance   
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 is the channel gain,  is additive 

Gaussian noise with zero mean and variance  

Instantaneous signal to noise ratio (SNR) ( k) of k
th

 

diversity branch is given as 

       (3) 

Where, is the energy of desired signal,  is the power 

of noise. 

Instantaneous signal to interference ratio (SIR)  can be 

written as 

     (4) 

Here is the energy of interfering signal. Channel gain for 

the noise as well as interference is assumed to be the same. 

Consider an order-L diversity system for no coherent 

detection of FSK (NFSK) signals. Shown in fig (1). 

 

The signal components received at different antennas are 

jointly Nakagami distributed with an arbitrary covariance 

matrix, whereas the noise components at different branches 

are Gaussian and spatially independent. We will first obtain 

the decision variable and then derive its error performance. 

 

III. DECISION VARIABLE 

The received signal at the kth antenna in the symbol 

duration 0<t<T can be written as 

  (5) 

Where i =1,2 and k =1,2,...L, and  is zero-mean 

white Gaussian noise process with one-sided spectral 

density   . The carrier frequency depends on the message 

with corresponding to symbol 1 and to symbol 0. The 

influence of the kth fading channel is characterized by the 

channel gain  and phase delay  which remain 

unchanged over the symbol interval T. In a complex form, 

the influence of the fading channel can be compactly 

expressed as 

    (6) 

Without loss of generality, suppose symbol 1 is transmitted, 

and let us consider the branch k. The upper band pass filters 

(BPF) is centered at the carrier frequency   , thereby 

allowing the desired signal to pass through while the lower 

BPF is centered at   , hence blocking the signal 

component. The noise output components from the upper 

and lower BPF's can also be represented in a complex form, 

denoted here by and ,respectively. They are 

mutually independent and each follows zero-mean complex 

Gaussian distribution with variance equal to twice that for

. The BPF outputs are further applied to the square-

law detectors. The diversity system combines the outputs 

from all upper branches and accumulates information from 

all lower branches to enhance symbol detection. These two 

combined outputs, when expressed in terms of the complex 

channel gains and noise components, are given by 

  (7) 

respectively, The decision variable is then taken as their 

difference. 

     (8) 

Since symbol 1is transmitted, an erroneous decision is made 

when   , and a correct event otherwise. The situation 

is reversed when symbol 0 is sent. 

 

IV. CHARACTERISTIC FUNCTION METHOD 

Let    denotes the correlation matrix of SNR vector
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And     the correlation matrix of SIR vector

 

Joint characteristic functions of the instantaneous SNR and 

SIR can be written as 

  (9) 

 and 

  (10) 

Where  and  

m is fading parameter. 

 

 and 

 

Following [10] the characteristic functions can be written as 

  (11) 

 and 

  (12) 

The probability of error can be directly obtained by 

characteristic function [11] 

    (13) 

Here, 

 

 

  

                                    

  (14) 

 

      (15) 

The contour integration can be achieved by Residue 

theorem 

 

 

  

    (16) 

Where  and  

Using eqn. (11) and eqn. (12) in eqn. ((16) we have 
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      (17) 

Where,    and   

 

V. CLOSED FORM SOLUTION 

Direct derivation of     derivative in the expression 

is very difficult, so, we define 

  (18) 

  and 

 

  

   (19) 

and          

Now we apply Faa di Bruno’s formula [13-14] to obtain 

derivative of  and  which results in 
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and 
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Hence 
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Let  and ,   are the Eigen values of and 

 respectively 

Eqn. (18) and eqn. (19) can be written as 
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Now 

  (25) 

The first derivative of H 
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So, i
th

 derivative of H becomes 

 

      (27) 

Similarly 

 

      (28) 

   

1

1

1 1 2
det

1 ! 11

m
L

L

d z
I

L dz zz z






  
    

    




  

2

ns z 
2

1s z  

 1
th

L

 
 

1 2
det

1 1

m
z

G z I
z z z


  

   
  

 
 

1 2
det

11

m

z
G z I

zz z



 
   

  


 

 

       In , InH z G z H z G z  

 1
th

L  G z  /G z

     
 

   1 11

1
1 1, 1

1
1 !

! !

itiL LL

L
i L i i i

H zd
G z L G z

dz t i

 


  

 
   

 
 

  

     
 

   1 11

1
1 1, 1

1
1 !

! !

iti
L LL

L
i L i i i

H zd
G z L G z

dz t i

 


  

 
  
 
 

  


 



 
   

 

11

1 1, 1
1

1

! !

itiLL

e

i L i i i
z

H z
P G z

t i



  


 
  

 
 

  

 
   

 

11

1 1, 1

1

1

! !

iti
LL

i L i i i

z

H z
G z

t i



  



 
 
 
 

  






k k
 1,2...k L 



 
   1

1 1

1 11

m
L

L
k k

z
G z

zz z 

  
  

   


 
   1

1 1

1 11

m

L

L
k

k

z
G z

zz z 

 
  

  
 

 






   
 0

1
In In 1 In

1 1

L

k k

z
H z z L z m

z

 
         



 
 

 0

1 21 1

1 1 1 1

L
k

k k

L
H z m

z z z z





  
          



             1 1 ! 1 1 ! 1
i ii ii

H z i z i z
 

       

            1

1

1 1 ! 1 1 1 ! 1 1
L ii ii

k k

k

m i z i z 




          

             / 1 1 ! 1 1 ! 1
i ii ii

H z i z i z
 

       

            1

1

1 1 ! 1 1 1 ! 1 1
L ii ii

k k

k

m i Z i z 




           
  

    



Volume III, Issue V, May 2014                                IJLTEMAS                                                             ISSN 2278 - 2540 
 

www.ijltemas.in Page 149 
 

Substituting eqn. (27) and eqn. (28) into eqn. (22), we have 

the probability error 

 

      (29) 

 

VI. RESULTS AND DISCUSSION 

The covariance matrix is selected from the empirical results 

of Lee (14) and zhang(10) for triangular antenna spacing. 

The bit error probability from eqn. (29) is numerically 

calculated using MATLAB. The results have been produced 

for the fading parameter m. Interference level usually is 

very high as compared to noise level. Hence for the 

reception of signal in presence of interference, the antenna 

is placed at lower height where as in presence of noise, the 

antenna is placed at higher height. Therefore, two antennas 

are required to study the effect of noise and interference 

independently. the two antennas in same triangular 

configuration of h= 100ft., d=98ft. and h=50ft.,d=98ft. have 

been utilized to receive the transmitted signals. 

In the numerical calculation of bit error probability, the 

following relation for matrices have been taken into account 

 

  and 

 

Where  and  are average SNR and average SIR per 

branch respectively. 

From the knowledge of average SNR 
      and       

average SIR , we can easily found average SINR by 

using relation                      
 

 

The variation of probability of bit error ( ) with signal to 

interference ratio (SIR) for signal to noise ratio (SNR) =10 

dB and L=3 for fading parameter m=0.8, 1.6, 2 and 4 is 

presented in fig (2). From the diagram we infer that for 

negative value of SIR in dB where interference is large as 

compared to signal level essentially in CDMA digital 

mobile communication, probability of bit error increases for 

SIR from -10dB to -5 dB and then in the interval -5 dB to 0 

dB, it decreases and finally it increases. Thus the variation 

of  for negative SIR indicated that for large interference, 

the decision region of the received signal is changed from 

the decision region of small interference.  

The other reason for the variation of   is that the effect of 

fading parameter m is sharp and non uniform in the negative 

region of SIR. For positive value of SIR, probability of bit 

error decreases with increase of fading parameter m. 

Fig (3) shows the variation of bit error probability with SIR 

for L=1, 2, 3 and 4 with SNR =10 dB, m=1.5 the effect of L 

in the negative region of SIR shows random behavior. In the 

region-1dB to 25dB, all the curves behave in similar fashion 

and with the increase of L, 

  Decreases for certain value of SIR. To compare the 

results the curve due to Kwan and Leung [5] have also been 

presented. For L=2,  remains constant    ( )      for 

the interval of SIR (-10dB to -3 dB) which indicates that 

there is no effect of interference. Such effects have been 

indicated by Kwan and Leung in region (-10dB to -6dB) 

.The nature of the curve is similar to our curves. For L=2, 

the value of    is in agreement with the values Kwan and 

Leung for SIR>10dB. 

Fig (4) indicated the change of bit error probability with SIR 

for SNR=-10dB, 0dB 5 dB, 10 dB and 15 dB with m=1.5 

and L=3. From the figure we infer that all the curves show 

the same value-1 dB of bit error probability at SIR=-5 dB. 

For a particular values of SIR,  decrease with the 

increase of SNR in the interval of SIR from -1dB to 25 dB. 

Table 1 

Bit error probability pe Average SIR (dB) 

1.00E+00 -10 

1.00E+01 -5 

1.00E+02 0 

1.00E+03 5 
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1.00E+05 15 
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1.00E+08 30 
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Fig. 2. Variation of Pe with SIR for m=0.8, 1.6, 2, 4 for L=3 

 

 

Table 2 

 

Bit error probability pe Average SIR (dB) 

1.00E+00 -10 

1.00E+01 -5 

1.00E+02 0 

1.00E+03 5 

1.00E+04 10 

1.00E+05 15 

1.00E+06 20 

1.00E+07 25 

1.00E+08 30 

1.00E+09 35 

 

 

 

 
 

 
Fig. 3. Variation of Pe with SIR for L=1, 2, 3, 4 at SNR=10dB 

 

 

 

Table 3 

Bit error probability pe Average SIR (dB) 

1.00E+00 -10 

1.00E+01 -5 

1.00E+02 0 
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1.00E+08 30 
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Fig. 4. Variation of Pe with SIR for SNR=-10dB, 0 dB, 5dB, 10dB and 15 

dB for L=3 
 

 

 

CONCLUSION 

In this paper, we have examined the bit error performance 

of non-coherent detection FSK over Nakagami fading 

channel with the total effect of noise and co-channel 

interference treating independently with arbitrary 

covariance matrices. The problem have been discussed 

using characteristic functions of noise and interference and 

closed form solution of differentiation. In our receiver, 

when SIR is small, the probability of bit error is lower as 

compared to that conventional match filter and optimal 

receiver. At lower values of SIR, the proposed receiver 

shows much better performance.  

CAPTIONS TO FIGURES 

(1)  Post detection, EGC combiner for NFSK. 
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(2)  Variation of  with SIR for m=0.8, 1.6,2 and 4 for 

L=3  

(3)   Variation of  with SIR for L=1, 2, 3 and 4 at 

SNR=10 dB. 

(4)  Variation of  with SIR for SNR =-10 dB, 0 dB, 5 

dB, 10 dB and 15 dB for      L=3 
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