
Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 187

Adavance Double Guard System : Detecting &

Preventing Intrusions In Multi-Tier Web

Applications
1
Ms. Shinde Jyoti R.,

2
Asst. Prof. Dabhade Sheetal V.,

3
Prof. Pathan S.K.

1, 2, 3
(, Department of Computer Engg, Smt Kashibai Nawale College of Engg , Vadgaon)

1, 2, 3
 (Pune, India.)

1
shindejyoti247@gmail.com,

2
sheetal.dabhade@gmail.com,

3
spathan@rediffmail.com

Abstract—In today’s world there is huge amount of use of

computer mainly for web application. Most of the people do

their transaction through web application [1]. So there are

chances of personal data gets hacked then need to be provide

more security for both web server and database server. For

that this Advance double guard system is used. In this Advance

double guard system for detecting & preventing attacks,

Intrusion detection system is used.

This system Detects attacks and prevents user account

from intruder from hacking his/her account. By using IDS,

system can provide security for both web server and database

server using mapping of request and query. The network

behavior of user sessions across both the front-end web server

and the back- end database that model using an IDS System.

This system able to search for in a place (container) attacks

that DoubleGuard would not be able to identify. System will

try this by isolating the flow of information from each web

server session. It quantify the detection accuracy when system

attempt to model static and dynamic web requests with the

back-end file system and database queries. For static websites,

system built a well-correlated model, for effectively detecting

different types of attacks. Moreover, system showed that this

held true for dynamic requests where both retrieval of

information and updates to the back-end database occur using

the web-server front end.

 Network security has been a very important issue,

since the rising evolution of the Internet. There has been an

increasing need for security systems against the external

attacks from the attackers in order to do this requirement we

develop Advance Double Guard system in the network.

 Keywords— Session ID, Query String, IDS, Mapping Patterns,

Virtual Environment.

I. INTRODUCTION

n this paper, we present Advance Double Guard system, a

system used to detect attacks in multi-tiered web services

and prevents web servers from malicious attacks[2][3]. Our

approach can create normality models of remote user

sessions. This session include both the web front-end

(HTTP) and back-end (File or SQL) network transactions.

To accurately associate the web request with the subsequent

DB queries the container ID is used. Thus, this Advance

DoubleGuard can build a causal mapping profile by taking

both the web server and DB traffic into account.

The container-based web architecture not only adopts

the profiling of causal mapping, but it also provides an

isolation that prevents future session-hijacking attacks. We

ran many copies of the web server instances in different

containers so that each one was isolated from the rest. As

ephemeral containers can be easily instantiated and

destroyed, we assigned each client session a dedicated

container so that, even when an attacker may be able to

compromise a single session, the damage is confined to the

compromised session; other user sessions remain unaffected

by it.

Using our prototype, we show that, for websites that do

not permit content modification from users, there is a direct

causal relationship between the requests received by the

front-end web server and those generated for the database

back-end. In addition to this static website case, there are

web services that permit determined back-end data

modifications. The services, which we call dynamic, allow

HTTP requests to include parameters that are variable and

depend on user input. Therefore, our approach to model the

causal relationship between the front-end and back-end is

not always deterministic and depends primarily upon the

application logic.

II. RELATED WORK

An IDS such as [8] also uses sequential information to

detect intrusions. Advance DoubleGuard, however, does not

correlate events on a time basis. It runs the risk of

mistakenly considering independent but concurrent events

as correlated events. Advance Double Guard does not have

such a limitation as it uses the container ID for each session

to causally map the related events, whether they be

concurrent or not.

 Databases always contain more valuable

information. So they should receive the highest level of

protection. Therefore, significant research efforts have been

made on database IDS [7], [6], [9] and database firewalls

[5]. These software’s, such as Green SQL [4], work as a

reverse proxy for database connections. Web applications

will first connect to a database firewall, instead of

connecting to a database server. SQL queries are analyzed,

if they’re safe, then they are forwarded to the back-end

database server.

 To achieve more accurate detection, the system

proposed in [16] composes both web IDS and database IDS,

and it also uses a reverse HTTP proxy to maintain a reduced

level of service in the presence of false positives.

 Some previous approaches have detected intrusions

by statically analyzing the source code [15], [19], [14].

I

mailto:shindejyoti247@gmail.com
mailto:sheetal.dabhade@gmail.com

Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 188

Others [13], [20], [12] dynamically track the information

flow to understand taint propagations and detect intrusions.

In Advance Double Guard, the new container-based web

server architecture enables us to separate the different

information flows by each session. For each session, this

provides a means of tracking the information flow from the

web server to the database server. Our approach also does

not require us to know the application logic or analyze the

source code. For the static web page, our Advance Double

Guard approach does not require application logic for

building a model. However, as we will discuss, although we

do not require the full application logic for dynamic web

services, we do need to know the basic user operations in

order to model normal behavior.

 Validating input is useful to detect or prevent SQL

or XSS injection attacks [11], [21]. However, we have found

that Advance Double Guard can detect SQL injection

attacks by taking the structures of web requests and database

queries without looking into the values of input parameters

(i.e., no input validation at the web server).

 Virtualization is used to increase security

performance and isolate objects. An alternative is a

lightweight virtualization, such as Linux-VServer [10],

OpenVZ [25], or Parallels Virtuozzo [18]. In general, these

are based on some sort of container concept. A group of

processes still appears to have its own dedicated system,

with its container, yet it is running in an isolated

environment. To isolate different application instances, there

are also some desktop systems [17], [23] that use

lightweight virtualization. Such virtualization techniques are

commonly used for containment and isolation of attacks.

However, in our Advance Double Guard, we utilized the

container ID to separate session traffic as a way of

extracting and identifying causal relationships between web

server requests and database query events.

 CLAMP [24] is architecture for preventing data

leaks even in the presence of attacks. By isolating data at the

database layer by users and code at the web server layer,

CLAMP guarantees that a user’s sensitive data can only be

accessed by code running on behalf of different users. In

contrast, Advance Double Guard focuses on modeling the

mapping patterns between HTTP requests and DB queries to

detect malicious user sessions. CLAMP requires

modification to the existing application code, and the Query

Restrictor works as a proxy to mediate all database access

requests. CLAMP requires platform virtualization whereas,

Advance Double Guard uses process isolation, and CLAMP

provides more coarse-grained isolation than Double Guard.

However, Advance Double Guard would be ineffectual at

detecting attacks if it were to use the coarse-grained

isolation as used in CLAMP. Building the mapping model in

Advance Double Guard would require a large number of

isolated web stack instances so that mapping patterns would

appear across different session.

III. PROBLEM DEFINATION

 We present Advance Double Guard system , a

system used to detect and prevent attacks in multi-tiered

web services. We can create normality models of isolated

user sessions that include both the web front-end (HTTP)

and back-end (File or SQL) network transactions. To

achieve this, to assign each user’s web session to a

dedicated container. We use the container ID to accurately

associate the web request with the subsequent DB queries.

Thus, Advance Double Guard can build a causal mapping

profile by taking both the web server and DB traffic into

account.

 Before Advance Double guard was developed the

system which is present prevents web server and database

from Linearization only. Before double guard not much

security provided to the web server and database. This

system cannot handle all attack. We need to use two different

technologies, one for web server and another for database to

prevent from attacks.

A. Goal

 Our primary goal is to build Advance Double Guard

model to improve on detection rate and prevention rate and

compare results with IDS model and Existing Double Guard

System and improve the search efficiency & Performance of

Advance Double Guard. Our aim to enable strong data

detection and protection for web applications while at the

same time we minimize the false positive rate.

IV. SYSTEM ARCHITECTURE AND DETENTION

 We assume that the database server will not be totally

taken over by the attackers. Attackers may attack the

database server through the web server or, more directly, by

submitting SQL queries, they may obtain and infect

sensitive data within the database.

A. Normal Model of System:

 We assume no prior information of the source

code or the application logic of web services used on the

web server. We are only analyzing network traffic that

spreads the web server and database. We assume that no

attack would occur during the training phase and model

building.

Figure 1. Basic Multitier Architecture.

 The web server acts as the front-end, with the file

and database servers acts as the content storage back-end.

Here Rq1 is the Request from Client 1(S1) to the Web

server and Rs1 is the Response from web server to the

client 1(S1) and so on.

 In our design, we use containers as temporary,

throwaway servers for client sessions. It is possible to

Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 189

initialize thousands of containers on a single physical

machine, and these virtualized containers can be rejected,

regressed, or quickly reinitialized to serve new sessions.

Only one physical web server runs many containers, each

one an exact copy of the original web server. Our approach

dynamically generates new containers and reprocesses used

ones. As a result, only one physical server can run

continuously and serve all web requests.

Figure 2. Web server occurrences running in containers.

 Figure 2 shows how communications are categorized

as sessions and how database transactions can be related to a

corresponding session. In the figure 2, the client 2 will

compromise only the VE2, and the corresponding database

transaction T2 will be the affected section of the data within

the database. Here, Rq is the Request made by the client to

the ―Web Server Virtual Machine‖, Rs is the Reply from

the VE to the client, VE is the Virtual Environment, Ts is

the Database Transaction set request, Tr is the Reply made

by the database server with the corresponding set of queries.

 In fact, we assume our sensors cannot be attacked

and we always intern correct traffic information at both the

ends. Moreover, as traffic can be easily being divided by

session, it is possible and easy for us to compare and

analyze the request and queries across different sessions.

Once we build the mapping model, it can be thus used to

detect abnormal behaviors. Both the web request and the

database queries within each session should be in unity with

the model. If there rises any request or query violating the

regular model within the session, then the identical session

is well thought-out to be an attack.

B. Scenarios of Attack

Our approach is effectively capturing the following type

of attacks.

a) Session Hijaking

 When user copies the address from the address bar

and paste it to another active address bar system get open

the page corresponding that address. But our prototype

provides to assign each user session into a different

container; however this was a design decision. For instance,

we can allocate a new container per each new IP address of

the client. In our system, containers were reused based on

events or when sessions time out.

b) Session replay

If your system remains idle for few minutes, after that

you try some action on website, rather than perform that

action system will go login page. How this is possible in or

prototype because in our prototype implementation, we used

a 60-minute timeout due to resource constraints of our test

server. However, this was not a limitation and could be

removed for a production environment where long-running

processes are required.

Figure 3: Session replay

c) Directory Browsing Attack

On web servers, Hackers cannot directly get list of files.

Directories on the web server are typically locked down to

prevent remote browsing when the directory contains

executable, text files, documentation, or configuration

materials. In such cases either the entire directory is

configured to block access, or access is granted on a per file

basis, requiring a exact request to access objects in the

directory. Directory listing can be prevented in server

configuration files, but may also arise from susceptibility in

a particular application.

Figure 4. Directory Browsing Attack

V. MODELING MAPPING PATTERNS

 Different web applications exhibit different

characteristics due to the various functionality. Some Web

sites allow regular users with the non- administrative rights

to update the contents of the server data. This creates

challenge for IDS system because the HTTP requests can

contain variables in the past parameters. Our approach

normalizes the variable values in both HTTP requests and

database queries, protecting the structures of the requests

and queries. Following this step, session i will have a set of

requests (Ri), as well as a set of queries (Qi). If the total

number of sessions of the training phase is N, then we have

the set of total web requests (R) and the set of total SQL

queries (S) across all sessions. Each single web request rm €

R may also appear several times in different Ri where i = 1,2

. . .n.

 The same holds true for qn € S. We classify the four

possible mapping patterns [22]. The mappings in the model

are always in the form of one request to a query set rm Qn.

The possible mapping patterns are Deterministic Mapping,

No Matched Request, Empty Query Set and

Nondeterministic Mapping.

Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 190

VI. MODELING FOR STATIC AND DYNAMIC

WEBSITES

In the case of a static website, the non-deterministic

mapping does not exist as there are no available input

variables or states for static content. We can easily classify

the traffic collected by sensors into three patterns in order to

build the mapping model. As the traffic is already separated

by session, we begin by iterating all of the sessions from 1

to N. For each rm ϵ R, we maintain a set ARm to record the

IDs of sessions in which rm appears. The same holds for the

database queries. We search for the AQs that equals the ARm

. When ARm = AQs, this indicates that every time rm appears

in a session, then qs will also appear in the same session, and

vice versa. Some web requests that could appear separately

are still present as a unit. In contrast to static webpages,

dynamic webpages allow users to generate the same web

query with different parameters. Additionally, dynamic

pages often use POST rather than GET methods to commit

user inputs. Based on the web servers application logic,

different inputs would cause different database queries. By

placing each rm , or the set of related requests Rm , in

different sessions with many different possible inputs, we

obtain as many candidate query sets { Qn , Qp , Qq . . .} as

possible. This mapping model includes both deterministic

and nondeterministic mappings, and the set EQS is still used

to hold static file requests.

VII. PERFORMANCE EVALUATIONS

The implementation of our prototype involves the web

server and the back-end DB. We also used two testing

websites, static and dynamic. We analyzed three classes of

attacks and measured the false positive rate for each of the

two websites. Finally we compared the user behavior for

each of the session for a different set of users. The following

represents the implementation of our prototype and the

attack detection rates.

A. Prototype Implementation

In our design, we choose to assign every user session

into a different container which was the security design

decision. Each and every new client (IP address) is assigned

to a new container and these containers are cast-off or

recycled based on the session time out. The session time out

is considered to be 30-minute. Thus, we are capable of

running multiple instances in a single server

Figure .5 : The overall Architecture of the model

The above figure shows the architecture and session

management of our prototype, where the host web server

acts as the dispatcher. In the case of the static website, we

served 12 unique web pages and collected real traffic to this

website and obtained 300 user sessions. In the case of the

dynamic websites, the site visitors are allowed to read, post

and comment on articles.

B. Static Website Model in Training Phase

For the static website, Deterministic Mapping and the

Empty Query Set Mapping patterns appear in the training

sessions. We first collected 150 real user sessions for a

training data set before making the website public so that,

there was no attack during the training phase. We used part

of the sessions to train the model and all the remaining

sessions to test it. For each number on the x-axis of Fig. 6,

we randomly picked the number of sessions from the overall

training sessions to build the model using the algorithm, and

we used the built model to test the remaining sessions. We

repeated each number 15 times and obtained the average

false

Figure.6 : False positives verses training time for static websites

positive rate (since there was no attack in the training data

set).

 Fig. 6 shows the training process. As the number of

sessions used to build the model increased, the false positive

rate decreased (i.e., the model became more accurate). From

the same figure, we can observe that after taking 30

sessions, the false positive rate decreased and stayed at 0.

This implies that for our testing static website, 30 sessions

for training would be sufficient to correctly build the entire

model. Based on this training process accuracy graph, we

can determine a proper time to stop the training.

C. Dynamic Model Detection Rates

 We also conducted model building experiments for the

dynamic blog website. We obtained 185 real user traffic

sessions from the blog under daily workloads. During this

phase, we made our website available only to internal users

to ensure that no attacks would occur. We then generated 15

attack traffic sessions mixed with the normal legitimate user

Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 191

session, hence the mixed traffic is used for the attack

detection.

Figure 4: False positive rate for dynamic models

 The above figure shows the ROC curves for the testing

result. We built our models with different number of

operations, and each point on the curves indicates the

threshold value. The threshold value is defined as the

number of HTTP requests or SQL queries in a session that

are not matched with the normality model. The nature of the

false positives comes from the fact that our manually

extracted basic operations are not sufficient to cover all

legitimate user behaviors.

CONCLUSION

 This paper consist of intrusion detection system to

Detect & prevent web application from intruders. Paper

developed IDS for prevents both website, static and

dynamic from intruder. The attack which cannot be

prevented by IDS that attacks also prevented by

Doubleguard. This paper find intruder by using container id

that contain session id and IP address of that user. IDS do

the mapping of request and query and by mapping it identify

user is authorize user or intruder.

 We achieved this by isolating the flow of information

from each web server session with a virtualization

technique. Also, we quantified the detection accuracy of our

Approach when we attempted to model static and

dynamic web requests with the back-end file system and

database queries. When we organized our prototype on a

system that working on Internet Information Security (IIS)

server, a blog application and a SQL Server back-end,

Advance Double Guard was able to identify a wide range of

attacks with minimal false positives. Finally, for dynamic

web applications, we reduced the false positives to 0.65%.

REFERENCES

[1]. SANS, ―The Top Cyber Security Risks,‖

http://www.sans.org/top cyber-security-risks/,2011

[2]. D.E.Denning, ―An Intrusion Detection Model‖. IEEE
Transactions on Software Engineering, 13(2):222to232,

February 1987.

[3]. T. Lane and C.E. Brodley. ―Temporal sequence learning and
data reduction for anomaly detection‖. In Proceedings of

the 5th ACM conference on Computer and
communications security, pages 150 to158. ACM Press, 1998.

[4]. greensql. http://www.greensql.net/.

[5]. K. Bai, H. Wang, and P. Liu. Towards database firewalls. In
DBSec 2005.

[6]. Y. Hu and B. Panda. A data mining approach for database

intrusion detection. In H. Haddad, A. Omicini, R. L.
Wainwright, and L. M. Liebrock, editors, SAC. ACM, 2004.

[7]. Lee, Low, and Wong. Learning fingerprints for a database

intrusion detection system. In ESORICS: European Symposium
on Research in Computer Security. LNCS, Springer-Verlag,

2002.

[8]. A. Seleznyov and S. Puuronen. Anomaly intrusion detection
systems: Handling temporal relations between events. In RAID

1999.

[9]. A. Srivastava, S. Sural, and A. K. Majumdar. Database intrusion
detection using weighted sequence mining. JCP, 1(4), 2006.

[10]. Linux-vserver. http://linux-vserver.org/.

[11]. D. Bates, A. Barth, and C. Jackson. Regular expressions
considered harmful in client-side xss filters. In Proceedings of

the 19th international conference on World wide web, 2010.

[12]. P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kr¨ugel, and
G. Vigna. Cross site scripting prevention with dynamic data

tainting and static analysis. In NDSS 2007.

[13]. R. Sekar. An efficient black-box technique for defeating web
application attacks. In NDSS. The Internet Society, 2009.

[14]. V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward

Automated Detection of Logic Vulnerabilities in Web
Applications. In Proceedings of the USENIX Security

Symposium, 2010.
[15]. D. Wagner and D. Dean. Intrusion detection via static analysis.

In Symposium on Security and Privacy (SSP ’01), May 2001.

[16]. G. Vigna, F. Valeur, D. Balzarotti, W. K. Robertson, C.
Kruegel, and E. Kirda. Reducing errors in the anomaly-based

detection of web-based attacks through the combined analysis of

web requests and SQL queries. Journal of Computer Security,
17(3):305–329, 2009.

[17]. S. Potter and J. Nieh. Apiary: Easy-to-use desktop application

fault containment on commodity operating systems. In USENIX
2010 Annual Technical Conference on Annual Technical

Conference.

[18]. Virtuozzo containers .http://www.parallels.com/products/pvc45/
[19]. M. Christodorescu and S. Jha. Static analysis of executables to

detect malicious patterns.

[20]. G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking.

ACM SIGPLAN Notices, 39(11), Nov. 2004.

[21]. T. Pietraszek and C. V. Berghe. Defending against injection
attacks through context-sensitive string evaluation. In RAID

2005.

[22]. Meixing Le, Angelos Stavrou, Brent ByungHoon Kang,‖
DoubleGuard: Detecting Intrusions in Multitier Web

Applications‖, IEEE transactions on dependable and secure

computing, vol. 9, no. 4,July/august 2012.
[23]. Y. Huang, A. Stavrou, A. K. Ghosh, and S. Jajodia. Efficiently

tracking application interactions using lightweight

virtualization. In Proceedings of the 1st ACM workshop on
Virtual machine security, 2008.

[24]. B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and A.

Perrig. CLAMP: Practical prevention of large-scale data leaks.
In IEEE Symposium on Security and Privacy. IEEE Computer

Society, 2009.

[25]. Openvz. http://wiki.openvz.org.

http://www.sans.org/top

