
Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 258

Documentation of Software Components for Reuse

Neha Malik

Dronacharya College of Engineering, Gurgaon, India

nehag78@gmail.com

Varsha Shrivastava

Dronacharya College of Engineering, Gurgaon,, India

shrivastava.varsha@gmail.com

Abstract: - Component documentation has become a key

issue in component trading because it often is the only way of

assessing the applicability, reliability and quality of a third-

party component, especially for product lines in which the

common architecture determines the significant

requirements and restrictions for components. Definition of

the documentation pattern is not sufficient for the adoption

of a new documentation practice. An environment that

supports the development of documentation is also required.

This paper highlights the difference between various

document models discussed in the paper.

Keywords: Components, Documentation, Framework.

I. INTRODUCTION

Dusinkand Katwijk (1995), in their survey on there use

literature, argued that component documentation was a

neglected area of research. However, a few models for

component documentation have been published. We chose

the following ones for more detailed analysis: Sametinger’s

(1997), Karlsson’s (1995), and the NATO model (1992). We

naturally recognize a wide base of literature concerning the

documentation of code components (Frakes &Pole,

1994;Henninger, 1997). However, the emphasis in these is on

find in gander trieving components, or they address other

narrow and specific areas: e.g., how to document loops.

II. REUSABLE SOFTWARE COMPONENT

DOCUMENTATION MODELS

This Paper concentrate on the three models mentioned earlier

appropriate for enlightening the state-of-art in general and for

fulfilling the purposes of this paper. We analyzed and

compared Same tinger’s, Karlsson’s and NATO’s models in

light of Or likowski’s and Yates’(1998)genre system frame

work. This section attempts to summarize these models and

their short comings as a basis for our model to be elaborated.

A. The NATO Model for the Reusable Software Component

Documentation (NATO,1992)

The NATO standard for the development of

reusable software components (RSC) pursues maximum

potential for software reuse. Documentation of are usable

component provides a key part of its reuse value, play in

gadual role. First of all, it must conform to the needs of

the immediate software system under preparation.

Secondly, it must give explicit guidance for re-users. Are-

user must be able to access quickly the information.

Documentation must comply with accepted

standards of the user community, being consistent in

organization and in format, and reflecting changes in the

code. Documentation should be self-contained and

possibly accompanied with their usable component.

Finally, documentation should be in machine-read able

form and understand able by others.

Reuse library emerges as a special concern.

Documentation must support the classification,

identification and retrieval of components .A

component’s functionality should be easily viewable

through abstracted summaries. The dependencies must be

explicitly described and there should be classification

information.

Also the assessment of RSC should be described.

Different kinds of metrics about there usability and quality

should be stated as well as known problem sand

recommended enhancements. The potential re-user should

also be aware of any commercial or legal restrictions, and

how to access the component if it is not physically in there

use library.

Reuser’s Manual

1. INTRODUCTION

 purpose of the document

 overview of the component

2. FUNCTION

 operation

 scope

3. INTERFACES

 RSC specification (identify all externally

visible operations)

 external references and parameters

 interfaces by class

4. PERFORMANCE

 assumptions

 resource requirements

 exceptions (how the RSC responds to

incorrect inputs)

 test results (any performance

measurements)

 known limitations

5. INSTALLATION

 how to instantiate the component (e.g.,

generic parameters)

 interfaces (enumerate and use)

 partial reuse provisions

 diagnostic procedures (what to do if a

mailto:nehag78@gmail.com

Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 259

problem occurs)

 usage examples

6. PROCUREMENT AND SUPPORT

 source (if not in library)

 ownership (any legal or contractual

restrictions)

 maintenance (what support is available;

points of contact)

Figure 1 InformationcontentoftheNATOre-user’smanual.(1993,p.8-5)

Normal documentation does not fully meet the needs of the

RSCre-user; additionalsupportshouldbeprovidedinare-

user’smanualforeverycomponent. The manual should follow

a standard format.

B. The REBOOT Component Model (Karlsson, 1995)

According to Karlsson, are usable components apart

of a product at some level of development (requirements,

design, code), together with information about the

component to make reuse feasible. There usable component

must be self-contained. Hence, when a company has decided

on which components to reuse, a decision on how these

components should be packaged for reuse must follow. The

component model describes the information needed for a

packaged reusable component.

Karlsson provides an entity-relationship-based

description of his component model with small

components only parts of the model may be regarded as

useful. The classification information aids component

identification and retrieval.

The component qualification information describes

the quality and reusability of the component. Information is

used while deciding whether the candidate component fulfills

requirements for quality and reusability. This information

also tracks there use history of the component, i.e., the

experiences and problems.

The component administrative information

includes general information about the component,

including authorization and prizing. Documentation

comprises two kind s of information. First of all, it holds

documentation to support the reuse of the component.

Secondly, it holds information intended for the

documentation of the production which the component

will be included. Documentation supporting reuse

a) Enables the evaluation of each component,

b) Enables the understanding of the functionality of the

component, and

c) Enables the adaptation of the component for specific

needs. The component interface describes the boundaries

of the component. The component body describes the

internal workings of the component. The test support

includes readily available test suites for the component.

The component model also defines relationships

between different elements of the model. The realizes-

relationship relates analysis, design and the resulting code of

a component and this way reflects the possibility of

component s existing on different levels of abstraction. The

includes relationship relates one or more code components to

form a composite object. The relationship shows components

version history by linking different versions of a component.

Figure: 2 The REBOOT component (documentation) model.(Karlsson,1995)

C. Sametinger’s (1997) Reuse Documentation

In addition to the documentation of software there

must be reuse documentation for software components. To

effectively and correctly reuse a software component there

should be in formation that enables

 The evaluation of component

 The understanding of the components functionality,

 The use of the component in a certain environment,

and

 The adaptation of the component for specific

needs.

Regular software documentation does not fulfill these

needs. The component is not reusable without proper

documentation. Thus, documentation must be valued as an

essential part of a software component. Sametinger has

elaborated his Reuse Manual on NATO’s(1993) standard and

Karlsson’s book (Karlsson,1995). Additionally, he has used

also Krueger(1992) and Meyer (1994) as the main

references.

CONCLUSIONS

Short comings of the models

Each model basically recognizes the same

general purpose for component documentation that

supports the re use process. However, some differences

can be found in how the models relate to the overall field

of software documentation. The NATO (1992) model

emphasizes that, in addition to explicit guidance to the

potential re-user, component documentation must fulfill

“the traditional role of documentation”,

Sametinger(1997) clearly distinguishes between other

software documentation and his component reuse

manual. In Karlsson’s(1995) REBOOT model, there use-

related aspects are partially embedded in the component

documentation, and partially documented elsewhere.

Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 260

Karlsson introduces separate documents for

qualify in go administering components (which naturally

support their use of the component as well).It seems that

no clearly enacted demarcation yet exists for the genre

system of component documentation.

All three models concentrate mainly on

depicting the information content of component

documentation. Sametinger’s and the NATO model

provide thorough guide lines about what information

should be included, where as Karlsson’s model stays on

a more abstract level. Anyhow, differences exist,

especially on how documentation is structured and what

kind s of information are included under particular

topics. Hence, a standardized structure for and a detailed

set of document general to be included in this general

system remain to be enacted. Moreover, these three

models shed practically no light on how, by whom, and

in what order the parts of component documentation

should be created and updated. The sequence of the parts

of component documentation thus needs to be better

illustrated in order to increase general understanding of

this (obviously rather complex) general system.

Little is said about what is expected from

communication media and other issues of the actual form

concerning this general system. The models seem to

assume that component documentation mostly consist of

digital text. NATO(1992) explicitly emphasizes that he

documentation should be in a machine-readable form, in

dependent of any particular word processor. Sametinger

(1997) and NATO(1992) both highlight conformance

with existing general-level documentation standards, and

emphasize the fact that the writing should generally be

clear, understandable, and complete. The lack of detailed

responses to the how-aspect (especially communication

media) seems natural because this aspect concretizes

only when actual component repositories with adequate

documentation are implemented and studied in real

organizational contexts.

In all models, the primary stake holderis “there

user” (NATO,1992,Karlsson,1995) or “the software

engineer” (Sametinger,1997). In addition, Karlsson and

the NATO model explicate, respectively, that “the

library staff” and “the repository managers” also need

to use component documentation. However, these

models consider the question of who should produce

the documentation either self-evident (i.e., the producer

of the component is always assumed to produce the

documentation as well) or other wise too trivial to be

discussed. Karlsson, however, adds that the reuser

should produce comments on previous use of

acomponent to be included in the documentation, thus

implying the possibility for various contributing take

holders. The who-aspect of component documentation

remains rather un-problematized. Furthermore, none of

the models explicates temporal aspects of component

documentation.

With regard the physical and logical location

of the information, all three models denote that

acomponent documentation should constitute a self-

contained unit, i.e., it should not be embedded in one

big document describe in gaset of components

(Sametinger,1997) or other surrounding documentation

(NATO,1992). The models also assume that component

documentation should be placed in a logically

organized (digital) repository. Interestingly,

NATO(1992) points out that the actual (code)

component can also be physically located else-where,

for instance in a separate organization, as long as the

documentation includes information about this location.

To summarize, the three models have focused

mainly on the information content to be included in

component documentation, neglecting the

communicative view point to a large extent (which,

however, represents the major rationale for the

documentation in the first place).

 REFERENCES

[1] T. J. Bigger staff and A. J. Perlis, editors “Software Reusability”, vol.

1: Concepts and Models. Addison-Wesley, 1989.

[2] Zoran Stojanovic “An Integrated Component-Oriented Framework

for Effective and Flexible Enterprise Distributed Systems
Development Systems”, Engineering Group Faculty of Technology,

Policy and Management Delft University of Technology Jaffalaan,

The Netherlands. (1999)
[3] P. Popov, L. Strigini, S. Riddle and A. Romanovsky, “Protective

wrapping of COTS Components”, NJIT University, USA.(1997)

[4] M. Woodman, O. Benediktsson, B. Lefever and F.Stallinger, “Issues
of CBD Product Quality and

Process Quality”, Annals of Software Engineering, 349-414. (1998)

[5] D. Garlan and B. Schmerl, “Component-Based Software Engineering
in Pervasive Computing Environments”, IEEE workshop, 403-444.

(1996)

[6] SbengZhong, “Software Library for Reuse-Oriented Program
Development”, University of Windsor, Windsor, Ontario, Canada.

(2000)

[7] I. Crnkovic, M. Chaudron and S. Larsson, “Component-Based
Development Process and Component Lifecycle”, In International

Conference on Software Engineering Advances (ICSEA). (2006)

[8] J. M. Voas, “Certifying Off-the-Shelf Software Components”, IEEE
Computer, 353–59. (June 1998)

