
Volume III, Issue VI, June 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 106

A Study on Software Aging and Rejuvenation

Techniques

1
Nagaraj G Cholli,

2
I M Umesh,

3
Dr. Srinivasan G N

1,3
Dept. of Information Science &Engg., R V College of Engg., Bangalore, Karnataka, India

2
BharathiarUniversity, Coimbatore, Tamil Nadu, India

Abstract:-Software aging is the phenomenon in which software

systems hang/ crash or show decreased performance. Software

rejuvenation is the proactive technique proposed to counter

software aging. In this paper, the authors discuss several

categories of software "bugs" and how they lead to software

aging. Numerical error accumulation, unplanned resource

allocation policies are the common causes of software aging.

Most of these problems are caused by bad software design or

faulty code [1]. Bad code affects the software in the long run;

bad code smell is the symptom in the source code of

a program that possibly indicates a deeper problem.

Software rejuvenation is the method which involves stopping

the running software and restarting it after removing error

conditions. This paper presents an overview of software

rejuvenation approaches developed for dealing with software

aging. Different approaches need to be used for rejuvenating

software systems running on virtualized environment, HPC

systems etc.,

Virtualization is the concept where multiple operating systems

run on single physical hardware. Virtualization is an emerging

technology that has great impact on transforming the IT

landscape and fundamentally changing the way that people

compute[2]. Several researchers have studied the advantages

of virtualization technology to rejuvenate the softwares

running on virtual machines and address the software aging

problem. In this paper we discuss few such studies and discuss

how virtualization has helped software rejuvenation strategies.

Key words - Bad code smell, software maintainability, software

metrics, virtualization

I. CAUSES OF SOFTWARE REJUVENATION

oftware aging is becoming significant as the economic

importance of the software is growing. Software aging is

the phenomenon in which software systems show reduced

performance or crash. There are various causes for software

aging like bad codes, memory leaks, memory fragmentation,

data corruption etc., Here, we discuss some of them.

A. Bad Codes

Bad codes affect the software in the long run but they are

not technically incorrect; bad code smell is the symptom of

the problem that may lead to serious problem later. Bad

code smells are a new measure of software maintainability.

If left unattended, bad smells can consume lots of resources

in terms of maintenance costs, testing etc., bad code smell

can be identified by set of software metrics. Software

metrics reflects code that is decaying and is likely to cause

the frequent faults, and associated testing expenditure. Many

researchers have done lot of work on detection of bad code

smells.

Tiago Pessoa et al.[3] developed a tool which is an Eclipse

plug-in that detects code smells and performs assessment in

Java source code. The detection algorithm is based on

Binary Logistic Regression, was initially calibrated by using

a moderately large set of pre classified methods (by human

experts) and validated for the Long Method code smell.

Foutse Khomh et el. [4] detected several code smells in

Eclipse and Azureus releases. It was observed that classes

with code smells are more change prone when compared to

others and also specific code smells are more correlated.

The negative impact of code smells on class change

proneness was proved by empirical evidence.

Dag I.K. Sjøberg et al. [5] conducted study of code smells

effect on maintenance. A controlled study was done to

quantify the relation between bad code smells and effort

needed for maintenance in an industrial setup. The outcome

of the study was that the presence of code smells alone did

not affect comprehension but that their combination tended

to increase the developers’ effort on comprehension tasks.

B. Memory Leaks / Fragmentation

In correct use of memory management routines leads to

Memory leak [6]. Memory leak occurs when an application

process are dynamically allocated memory blocks and does

not release them during execution. Roughly 50% of the

applications do contain one or the other memory leaks [7].

Autran Macêdo et al. [8] conducted a detailed study on how

memory management is done inside application process

focusing fragmentation and leakage memory problems. The

authors illustrated how fragmentation and leakage occurs

and how they accumulate leading to aging-related failures.

G. Carrozza et al [9] observed that memory leaks are the one

of the reasons for memory exhaustion problems in software

systems. A practical approach was proposed by

authors to identify aging caused by memory leaks in the

middleware used for critical applications development.

Aging trends triggered due to memory leaks in software

systems based on a CORBA-compliant OTS middleware

were detected by the authors. A real-world middleware for

developing mission-critical applications for Air Traffic

Control has been studied.

S

http://en.wikipedia.org/wiki/Symptom
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Computer_program
http://dl.acm.org/author_page.cfm?id=81435604611&coll=DL&dl=ACM&trk=0&cfid=180903094&cftoken=73821870
http://academic.research.microsoft.com/Author/1560080/autran-macedo

Volume III, Issue VI, June 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 107

Distributed applications suffer reduced performance due to

memory leaks. As more and more applications are migrated

to virtual environment and cloud, it brings additional

uncertainty of not knowing the configuration of the physical

machine on which the application is actually running [10]. It

is very difficult to detect and debug such problems in

development and test environments.

Another important memory-related aging effect is the

memory fragmentation [1]. As memory fragmentation and

memory leaks are located inside the application process, the

effects of such defects are less at the user level. The impact

will be higher when it happens at the kernel level.

Vaidyanathan, K et al., [11] proposed a model to estimate

the exhaustion rate of resources of the operating system both

as a function of time and the system workload state. The

authors constructed a semi-Markov reward model based on

workload and resource usage data collected from UNIX

operating system. The fault management techniques such as

software rejuvenation may be implemented using this model

to prevent unexpected outages.

Michael Grottke et al. [12] created aging effect

classes studying different types of aging effects based on

their common characteristics as shown in Table 1. Examples

for Volatile aging effects are OS resource leakage and

memory fragmentation as they can be removed from re-

initialization of the system. Non-volatile aging effects still

exist after reinitializing of the system/process. Some of the

examples for non-volatile aging effects include

accumulation of numerical errors; file system and meta data

fragmentation.

Table 1. Classes of aging effects

 Source: Research paper titled “The Fundamentals of Software Aging “
 authored by Michael Grottke et al.

II. SOFTWARE REJUVENATION

Software Rejuvenation is a proactive fault management

technique aimed at cleaning up the system’s internal state to

prevent occurrence of more severe crash failure in the future

[13]. Software rejuvenation mechanism involves the series

of steps such as frequently stopping the application and

restarting it after cleaning the internal state. Few software

rejuvenation techniques have been discussed.

A. Proactive fault recovery

A proactive approach to fault management involves

occasionally terminating an application or a system,

cleaning its internal state and restarting it. Kalyanaraman

Vaidyanathan [14] extended the traditional classification of

software faults (deterministic and transient) and included

faults attributed to software aging. For each of the fault

classes, treatment and recovery strategy was studied and

explored methods for evaluating the proactive fault

management in operational softwares. The authors consider

two-pronged strategy—measurement-based modeling and

analytic modeling.

Software aging is diagnosed by collecting and analyzing the

collected system data in measurement based approach.

Later, proactive methods can be applied to prevent

unplanned outages. Potentials problems handling can be

automated using measurement based approach where as

analytic modeling is aimed to determine optimal times to

perform rejuvenation by developing and analyzing

stochastic models to maximize availability or minimize

downtime cost.

B. Rejuvenation Techniques on Virtualized Environment

Dan Pelleg et al. [15] developed an approach to monitor

virtual machines for problems. The approach used

hypervisor directly for monitoring of the resource requests.

The readings are then analyzed using machine learning.

Out-of-band monitoring which uses machine learning and

virtualization can be used to accurately identify problems in

guest OS.

The disadvantages of existing in-band and out-of band

approaches were explained by authors. In-band agents, run

on the same agents, In-band agents run on the same system

they monitor. This adds workload to the system they are

monitoring. An agent may face resource shortage as

operating system may divest resources like CPU time or

memory.

Out-of-band agents run on different machine other than the

system being monitored and hence have reduced visibility

into system behavior. The ability to respond is limited to the

extent of just informing the administrator about the

degrading resource.

The authors successfully identified the hard-to-detect kernel

hangs that lead to saturation of CPU resources using their

new approach. They also demonstrated that out-of-band

monitoring using virtualization and statistical analysis can

equal and even surpass the diagnostic accuracy of in-band

monitoring, while avoiding the many pitfalls associated with

in-band monitoring.

Luis Moura SilvaIn et al [16] proposed automated self-

healing techniques which can be applied easily to off-the-

Basic Class Extension Examples

Resource
Leakage

(1) OS-specific
(2) App-specific

Unreleased

 Memory (1,2)

 File handlers
(1)

 Sockets (1)
Unterminated

 Processes (1)

 Threads (1,2)

Fragmentation
(1) OS-specific
(2) App-specific

Phys. Memory (1)
File system (1)
Database files (2)

Numerical
error accrual

(1) OS-specific
(2) App-specific

Round-off (1,2)

Data
corruption
accrual

(1) OS-Specific
(2) App-

Specific

File system (1)
Database files (2)

Volume III, Issue VI, June 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 108

shelf application servers and internet sites. Virtualization

can be helpful for software rejuvenation and fail-over in the

occurrence of transient application failures and software

aging.

The authors used XEN virtualization middleware to create 3

virtual-machines per application server: one VM was used

to run software load balancer, the other one to run main

application server and the third one was the replication of

the application server. The third VM worked as hot stand

by.

To detect software aging and trigger a rejuvenation action,

they used third VM having load balancer and also a software

module. The procedure involved first starting the standby

server, then shifting all the new requests and sessions to this

second server, the session-state is migrated from the primary

to the secondary server. Once on-going requests are finished

in the primary server, the server is restarted without losing

any in-flight request or session state. This is called ―clean‖

restart.

The authors opined that by using virtualization layer and

some software modules, a zero downtime can be achieved

without any loss of work. It does not suffer from

performance degradation also. The same technique can be

applied to single server or clusters also.

Aye MyatMyatPaing and Ni LarThein [17] presented

stochastic Petri nets model for time-based rejuvenation

policy for VMM to analyze the availability of virtualized

server system and resource usage management algorithm to

support live VM migration.

Running VM can be migrated from one physical machine to

another using live migration technology without outage.

The VMM running on the physical machine suffers aging as

the time degrades. When the software aging or some

potential anomaly happens in one of the physical machine in

the resource pool, the rejuvenation manager of management

server will trigger a rejuvenation operation. All the new

requests and sessions are migrated from the virtual machine

of the aging affected physical machine to virtual machine of

other physical machine in the resource pool. When the

ongoing requests are finished in aging infected PM, these

VMM will be rejuvenated. The authors used stochastic Petri

nets (SPN) model with time-based rejuvenation policy.

Clustering technology, virtualization and methods for

software rejuvenation can provide a very fast recovery to cut

down the mean time to recovery to the minimum. It can

achieve minimize downtime even in case of service restart.

Jean Araujo [18] presented an approach for software

rejuvenation in cloud using Eucalyptus Cloud Computing

framework. By using thresholds and time series based

forecasting, the authors implemented a resource-usage-

aware rejuvenation policy. An accurate forecast of critical

points of resource degradation is possible by trend analysis

of software aging –related data, matched against multiple

time series models.

Utilization of software and hardware resources was

analyzed in scenarios in which some cloud operations were

performed continuously. A rejuvenation method was applied

to prevent unavailability of the system by scheduled process

restart.

C. Rejuvenation in High performance computing

The failure rate of super computers also increases with

increase in the scale of high performance computing (HPC).

The failures in HPC can be minimized by resetting or

repairing the system components which is rejuvenation

technique being followed. Checkpoint/restart is the most

pervasive fault-tolerance (FT) technique used in HPC, yet it

suffers from severe performance degradation, enormous

requirement of storage, and significant overhead of writing

to disks. Furthermore, this reactive fault tolerance approach

cannot avoid long failure downtime, which is intolerable for

performance-demanding applications.

CONCLUSION

In this paper, we have presented some of the causes for

software aging and discussed the software rejuvenation

techniques. We conclude that Software rejuvenation can be

used to prolong the availability of services.

Software rejuvenation on virtualized environment is the

emerging research area. As the availability of reliability of

servers running on virtual environment needs to have zero

down time in the current business scenarios, more

optimized, effective software rejuvenation techniques for

virtualized environment are the need of the hour. As many

firms are moving from physical hardware usage to cloud

services, development of very effective rejuvenation

techniques for cloud environment will contribute a lot to

service provider as well for the users.

REFERENCES

[1] J. Alonso, et al., A comparative experimental study of software

rejuvenation overhead, Performance evaluation (2012), doi:

10.106 /j.peva.2012.09.002

[2] Thandar THEIN et al., ―Availability Analysis and Improvement
of Software Rejuvenation Using Virtualization‖, Economics and

Applied Informatics, 2007, Issue 1, Pages 5-14.

[3] Tiago Pessoa, ―An Eclipse Plugin to Support Code Smells
Detection‖, INFORUM'2011 conference proceedings, Luis

Caires e Raul Barbosa (eds.), 8-9 September, Coimbra, Portugal,

2011
[4] FoutseKhomh, An Exploratory Study of the Impact of Code

Smells on Software Change-proneness , Proceeding WCRE '09

Proceedings of the 2009 16th Working Conference on Reverse
Engineering Pages 75-84

IEEE Computer Society Washington, DC, USA 2009

[5] Dag I.K. Sjøberg, ―Quantifying the Effect of Code Smells on
Maintenance Effort‖, IEEE Transactions on Software

Engineering, Volume 3, Issue 36, 2012

[6] Q. Ni, W. Sun, and S. Ma, ―Memory leak detection in Sun
Solaris OS‖, Proc. Int’l Symp. on Computer Science and

Computational Technology, 2008.

[7] Nikita Salnikov-Tarnovski, ―Why is your software
aging?‖,http://plumbr.eu/blog/why-is-your-software-aging,

August 15, 2013.

http://econpapers.repec.org/article/ddjfseeai/
http://econpapers.repec.org/article/ddjfseeai/
http://econpapers.repec.org/article/ddjfseeai/
http://dl.acm.org/author_page.cfm?id=81435604611&coll=DL&dl=ACM&trk=0&cfid=180903094&cftoken=73821870
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5328618
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5328618
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5328618
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5328618
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5328618
http://plumbr.eu/blog/why-is-your-software-aging

Volume III, Issue VI, June 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 109

[8] AutranMacêdo, Taís B. Ferreira, RivalinoMatiasJr, ―The
mechanics of memory-related software aging‖, IEEE

International Workshop on Software Aging and Rejuvenation -

WoSAR , 2010

[9] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, S. Russo,

―Memory Leak Analysis of Mission-Critical Middleware‖,

Journal of Systems and Software, 2010
[10] VladimirˇSor and SatishNarayanaSrirama, ―A statistical

approach for identifying memory leaks in cloud applications‖,

CLOSER 2011 - International Conference on Cloud Computing
and Services Science.

[11] Vaidyanathan K., , ―A measurement-based model for

estimation of resource exhaustion in operational software
systems‖, Proceedings 10th International Symposium on

Software Reliability Engineering,1999

[12] Michael Grottke, RivalinoMatias Jr. and Kishor S. Trivedi, ―The
Fundamentals of Software Aging‖, 19thInternational Symposium

on Software Reliability Engineering, 2008.

[13] A.T. Tai, L. Alkalaj, and S.N. Chau, ―On-Board Preventive
Maintenance: A Design-Oriented Analytic Study for Long-life

Applications‖, Performance Evaluation, vol 35, no.3-4, pp. 215

-232, 1999.

[14] KalyanaramanVaidyanathan, ―Proactive management of

software systems: analysis and implementation‖,

Doctoral Dissertation, Duke University Durham, NC, USA

©2002

[15] Dan Pelleg et al. , ―Vigilant—Out-of-band

Detection of Failures in Virtual Machines‖, ACM

SIGOPS Operating Systems Review, Volume 42, Issue 1,
January 2008, Pages 26-31

[16] Luis Moura Silva et al.,‖Using Virtualization to Improve
Software Rejuvenation‖, Sixth IEEE International Symposium

on Network Computing and Applications (NCA 2007)

[17] Aye MyatMyatPaing and Ni LarThein, ―High availability

Solution: Resource Usage Management in Virtualized Software

Aging‖, International Journal of Computer Science &
Information Technology (IJCSIT) Vol 4, No 3, June 2012

[18] Jean Araujo et al,‖ Software Rejuvenation in Eucalyptus Cloud
Computing Infrastructure: a Method Based on Time Series

Forecasting and Multiple Thresholds‖, Third International

Workshop on Software Aging and Rejuvenation,2011.

http://academic.research.microsoft.com/Author/1560080/autran-macedo
http://academic.research.microsoft.com/Author/55007874/tais-b-ferreira
http://academic.research.microsoft.com/Author/7627115/rivalino-matias
http://libra.msra.cn/Conference/5022/wosar-ieee-international-workshop-on-software-aging-and-rejuvenation
http://libra.msra.cn/Conference/5022/wosar-ieee-international-workshop-on-software-aging-and-rejuvenation
http://libra.msra.cn/Conference/5022/wosar-ieee-international-workshop-on-software-aging-and-rejuvenation
http://libra.msra.cn/Conference/5022/wosar-ieee-international-workshop-on-software-aging-and-rejuvenation
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Vaidyanathan,%20K..QT.&searchWithin=p_Author_Ids:37324380600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Trivedi,%20K.S..QT.&searchWithin=p_Author_Ids:37273190200&newsearch=true

