
Volume III, Issue VII, July 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 113

A Program Model Based Regression Test Selection

Technique for Object-Oriented Programs

 Nitesh Chouhan Dr. Maitreyee Dutta Dr. Mayank Singh
 Assistant Professor Associate Professor Associate Professor

 Department of IT Department of Computer Science Department of Computer Science

 MLVTEC Bhilwara NITTTR, Chandigarh KEC, Ghaziabad

Abstract- We propose a regression test selection technique that

is based on analysis of source code of an object-oriented

program. First we construct a System dependency graph model

of the original program from the source code. When some

modification is executed in a program, the constructed model is

updated to reflect the changes. Our approach in addition to

capturing control and data dependencies represents the

dependencies arising from object-relations. The test cases that

exercise the affected model elements in the program model are

selected for regression testing. In our approach System Design

Graph representation will be used for regression test selection

for analyzing and comparing the code changes of original and

modified program. Empirical studies carried out by us show

that our technique selects on an average of 26.36. % more fault-

revealing test cases compared to a Control Dependence Graph

based technique while incurring about 37.34% increase in

regression test suite size.

Keywords: Software maintenance, Regression testing, Regression

test selection, System Dependence Graph.

I. INTRODUCTION

aintenance of an object oriented program is frequently

necessitated to fix bugs, to enhance or adapt existing

functionalities. Figure1, adapted from Do et al. [7], shows a

popularly-followed maintenance process model. After that

resolution tests are carried out to verify the modified parts of

the code, while regression testing is carried out to test the

unchanged parts of the code that may be affected by the code

change. After the testing is complete, the new version of the

software is released, which then undergoes a similar cycle. In

the development phase, regression testing may begin after

the detection and correction of errors in a program. At the

last stages of program development when the program has

been reasonably tested, testing is aimed at revealing the

hidden persistent software errors. At this stage, a well-

developed test plan should be available. It makes sense to

reuse the existing test cases, rather than redesigning all new

test cases, in retesting the program after it is corrected for

any errors. Many modifications may occur during the

maintenance phase where the software system is corrected,

updated and fine-tuned.

The objective of regression testing is to ensure that no new

errors have been introduced in the unmodified parts of the

code due to the changes made [13]. Here, we would like to

note that some existing papers in the literature also include

testing the directly modified parts of the code as part of

Fig. 1. Activities that take place during Software Maintenance and

Regression Testing

regression testing. In our work, we consider testing the

directly changed parts of the code as repeated execution of

unit testing. Unit tests are re-executed to validate the

modified parts of the code, while regression testing is carried

out to revalidate the unchanged parts of the code that might

have been affected by the code change. After testing is

complete, a new version of the software is released, which

then undergoes a similar maintenance cycle.

 Regression testing is an expensive activity and is carried

out after each modification to software [11, 12]. Regression

Test Selection (RTS) is carried out to ensure that changes do

not adversely affect unmodified portions of the software. It

often accounts for almost half of the software maintenance

costs [14]. To reduce regression testing costs, it is necessary

to eliminate all those test cases that solely run the unaffected

parts of the code, because they are unlikely to detect any

bug. At the same time, it is also important to ensure that no

test case that has the potential to detect a regression bug is

M

Volume III, Issue VII, July 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 114

overlooked. Accurate regression test selection is, therefore,

considered to be an issue of considerable practical

importance and has the potential to substantially reduce

software maintenance costs [20]. Regression testing is

carried out at various phases of software development life

cycle such as, at unit, integration, system testing as well as

during maintenance phase [8]. RTS techniques help to

reduce the time and effort required to carry out regression

testing.

 RTS techniques based on analysis of both source code

[1, 5, and 4] and model [7, 8, and 2] have been proposed in

the literature for object-oriented software. Many RTS

techniques first construct either the control flow [11, 4] or

the dependency representation [5] of programs based on

code analysis and then select test cases. These techniques

compare the original and modified versions of the program

model and select test cases that execute the affected model

elements. In case of UML model-based RTS techniques,

regression test cases are selected by comparing the original

model with the model of the modified program [7, 8, and 1].

A problem with this approach is that models being

abstraction after all, are often insensitive to minor code

changes. In this context, we propose an RTS technique that

considers control and data dependence information of object-

oriented programs.

 This paper is organized as follows: In Section 2, we

discuss certain Basic concepts that provide the basic details

needed to understand our approach. We explain our proposed

approach in Section 3 and RTS in Section 4. We describe our

empirical study in Section 5 and finally conclude the paper

in Section 6.

II. BASIC CONCEPTS

 In this section, we discuss certain basic concepts that

underlie our approach to RTS for object oriented programs.

We first present some definitions used in the context of

regression test selection and then discuss a few models

proposed for object oriented programs. Subsequently, we

discuss some features of object oriented program that are

relevant to regression test selection and also discuss a UML

based RTS technique proposed by Naslavsky et al. [26]

which we have used to compare our experimental results.

For notational convenience, in the rest of the article we

denote the original and the modified programs by P and P`,

respectively. The initial test suite for P is denoted by T, and a

test case in T is denoted by t.

A. Concepts Related to Regression Test Selection

 In this section, we discuss a few important concepts

and notations relevant to our work on regression test

selection.

Rothermel and Harrold [21] have defined a set of metrics to

evaluate the effectiveness of an RTS technique. However,

their metrics were proposed in the context of procedural

programs and do not consider specific characteristics of

object oriented programs, such as the changed notion of

correctness of an object oriented programs that also involves

the notion of time.

 In the context of object oriented programs, we argue

that a more accurate metric of the efficacy of RTS is the

number (or percentage) of test cases that are selected from

those that failed when all the valid test cases in the initial test

suite are run on the modified program. Thus, the percentage

of failed test cases selected by an RTS technique can serve as

a figure of merit.

1) Fault - Revealing Test Cases

Rothermel and Harrold [21] have defined a fault- revealing

test case for a traditional program P as a test case t∈ T that

can cause P to fail by producing in correct outputs for P. A

test case t ∈ T is said to be fault-revealing for programs P

and P` if and only if it can cause P` to fail by producing an

incorrect output or cause the output to be produced too late.

 2) Modification - Revealing Test Cases

Rothermel and Harrold [21] have defined a modification-

revealing test case as a test case t∈ T that produces different

outputs for P and P`. A test case t ∈ T is said to be

modification-revealing for P and P` if and only if it produces

different outputs when executed with P and P`, or if the

outputs for P and P` are produced at different instants of

time.

3) Relevant Regression Test Cases, Safety, and Precision

 A test case t ∈ T is relevant to a change if it executes those

unmodified parts of P` which are affected due to data,

control, or task execution dependencies. Therefore, all

relevant test cases need to be executed during regression

testing of P`.

B. Program Models

 Graph models of programs have extensively been used

in many applications, such as program slicing [22], reverse

engineering [23], etc. Some of the popular procedural graph

models reported in the literature include control flow graphs

(CFG) [24], program dependence graphs (PDG) [25], and

system dependence graphs (SDG) [12]. In the following, we

briefly review an SDG graph model since it is related to our

work.

 System Dependence Graph (SDG) was first introduced

by Horowitz et al. and was used to model procedural

programs [12]. Later on, SDG was extended by Larsen and

Harrold to model object-oriented programs [7].

 An SDG is a directed, connected graph G = (V, E),

consisting of a set V of vertices and a set E of edges. In the

following, we describe the different types of edges and

vertices in an SDG.

Volume III, Issue VII, July 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 115

SDG Edges

 Data dependence edge: Data dependence edges are

used to represent the data dependence relations.

 Call edge: A call edge is used to connect a call site to

a method entry vertex.

 Control dependence edge: A control dependence

edge is used to represent control dependence

relations.

 Summary edge: A summary edge is used to

represents the transitive dependence between actual-

in and actual-out vertices.

 Class member edge: A class member edge is

represent the membership relation between a class

and its methods. A class entry vertex is connected to

a method entry vertex by using a class member edge.

 Parameter dependence edge: Parameter dependence

edges are represent passing values between actual

and formal parameters in a method call.

SDG Vertices

 Entry vertices: In an SDG, classes and methods have

entry vertices. A a method entry vertex represents an

entry into a method and a class entry vertex represents

an entry into a class.

 Polymorphic choice vertex: This is used to represent

dynamic choice among the possible bindings in a

polymorphic call.

 Statement vertices: Statements that are present in the

methods are represented by statement vertices. There

are two types of statement vertices: simple statement

vertices and call vertices. Method call statements are

represented by call vertices and all other statements

such as assignments, conditionals loops and are

represented by simple statement vertices.

 Parameter vertices: The parameter vertices are of four

types. These include formal- in, formal-out, actual-in,

and actual-out. The formal-in and formal-out vertices

are created for each method entry vertex and actual-in

and actual-out vertices are created for each call vertex

and

 A class is represented in an SDG by a Class

Dependence Graph (ClDG) [5]. The root node of a ClDG is

represented by a class entry vertex. Each method in a ClDG

is represented by a procedure dependence graph [8]. Each

method in a class has a method entry vertex.The class entry

vertex is connected to the method entry vertex for each

method in a class by class member edges.

In a ClDG, a method call is represented by a call vertex. For

each method call vertex, the actual-in and actual-out

vertices as well as formal-in and formal-out vertices are

created for each called method. The actual-in parameter

vertices are connected to the corresponding formal-in

vertices in the

__

Example 1:

CE1: Class Calculator {

 S2: int a;

 S3: int b;

 E4: void set(int i,intj)

 S5: a=i;

 S6: b=j:

 }

 E7: int add(){

 S8: int result = a+b;

 S9: return result;

 }

 }

called method by parameter-in edges. The formal-out vertex

of the called method is connected to the corresponding

actual-out vertex at the calling method by a parameter-out

edge. For a derived class, the representation of the base

class method is reused for representing the inherited

methods. Below program example shows a sample program

and Figure 2 shows the SDG representation of this program.

C. Effectiveness of a Regression Test Suite

 A regression test suite should include only that subset

of original test suite that is likely to detect a regression

error. To determine the effectiveness and quality of a

regression test suite, Rothermel et al. have defined the

concept of fault-revealing test cases for a program P [23].

D. Program Slicing

 Program slice concept was first introduced by Weiser

for debugging of programs [8]. A program slice consists of

all those program statements that can affect the values

computed at some point of interest called the slicing

criterion [6, 12, and 7]. A forward program slice at a

program point o with respect to a variable x contains all

statements in the program, including conditionals that might

be affected by any modifications to x at o [12]. A backward

program slice at a program point o with respect to a variable

x contains all statements in the program, including

conditionals that might affect the value of x at o [12].

Volume III, Issue VII, July 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 116

Fig. 2. SDG representation for the Program Example 1

E. Naslavsky’s UML-Based RTS Technique

 Naslavsky et al. [26] presented a model-based RTS

technique that uses UML class and sequence diagrams for

test selection. They transformed sequence diagrams of both

the original and modified versions of a program into model-

based control flow graphs. The traceability between test

cases and the sequence diagrams is used to determine the

elements of control flow graphs that are executed by each

test case. Finally, the control flow graphs of both original

and modified versions are analyzed and the test cases are

selected using traceability information.

III. P-ReTEST: PROPOSED APPROACH

 We have named our proposed approach for regression

test case selection as P-ReTEST (Program Model Based

Regression Test case Selector). Our technique selects

regression test cases based on an analysis of control and

data dependencies. In the following, we describe the

important activities that are carried in P-ReTEST. As

mentioned in Section I, the maintenance phase consists of

multiple maintenance cycles, and in each maintenance cycle

there can be many regression testing cycles. RTS is an

important activity carried out in each regression testing

cycle. The important steps of our approach P-ReTEST

carried out in the first regression test selection cycle have

been shown in Figure 3 using an activity diagram. As shown

in Figure 3, the important activities in the first regression

test selection cycle include constructing SDG model,

collecting test coverage information and marking the test

coverage information in SDG model are not repeated for

subsequent regression test selection cycles in our approach.

We now describe the different activities that are carried out

during the first regression testing cycle.

 The important steps in purposed approach is as follows

as shown in figure 3

Fig. 3. Activity Diagram Representation

Step1: Construct SDG model: Very first, the SDG model for

the original program P will construct using a technique

specified by Larsen and Harrold [20].

Step2: Identify changes: The changes between P and the

modified program P' will be identified through analysis.

These identified statement-level changes will be kept in a

file named as Differ. Each entry in Differ file contains the

changed statement in P', the line number in P or P', the name

of the method and the class to which the changed statement

belongs. This is shown by the data store Differ in Figure 3.

Step3: Instrument and execute the program: In this step,

original program P will be instrumented by inserting print

statements and instrumentation will be done at basic block

level. The print statements will insert to collect test

coverage information. The instrumented code will be

executed with the original test suite T to generate

information, which statements are executed for each test

case. The test coverage information generated in this step

denoted by Coverage file in figure 3 and is saved for later

processing.

Step 4: Mark the SDG model: The test coverage information

will be marked on SDG model.

Step5: Update the SDG model: The model constructed for

original program P will update during each regression

testing cycle to make it correspond to the modified program

P' using information stored in file Diff.

Step6: Select test cases: In this step, regression test cases

will select based on analysis of SDG model.

Volume III, Issue VII, July 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 117

A. Types of Program Changes

 An arbitrary change to a program could be any one of

the following three types: (1) addition of a statement, (2)

deletion of a statement, or (3) modification of a statement. A

change to a program P could be confined to a single line or

could span multiple lines. A change to P might require

addition and deletion of some nodes and edges of the

corresponding SDG model. Any arbitrary modification

could be considered to be composed of a deletion operation

followed by an addition operation. Therefore, in our work,

we assume that addition and deletion are the only two basic

change operations. In the following, we identify the changes

to the SDG model required to reflect the changes caused due

to the two basic program change operations.

 A single statement-level change could affect the

dependency relations among various elements of a program

in subtle ways. In the following, we elaborate how the

control flow and dependency relations are affected due to

the two basic types of code changes: addition and deletion.

 -Addition of Statements: Adding new statements to P

requires creating new nodes and edges in the SDG model

M. The additional edges created could be of types control

flow, control or data dependence, parameter-in, etc. It may

also be required to delete certain existing control flow and

dependency edges during edge creation.

-Deletion of Statements. Deletion of one or more statements

could affect the dependencies existing among certain other

statements, for example, if a statement that defines a

variable is deleted, it could lead to a wrong evaluation of a

predicate which uses that variable. Therefore, before actual

deletion of statements, it is important to identify and mark

all those program elements as affected which are data

dependent on the deleted statement before actual deletion.

Before a statement (i.e., one or more nodes) is deleted, first

the other nodes in M that are data or control dependent on

the deleted node(s) are identified and are marked as

affected. Then, the node(s) in M corresponding to the

deleted statement are deleted. The different edges which are

incident on or emanate from the node(s) corresponding to

the deleted statement are also deleted. In addition, new data-

and control-dependency edges can get created on account of

the modified dependency relationships.

B. Regression Test Selection

 The set of selected regression test cases (TREG) can be

expressed as:

TREG= TDEP

Where, TDEP denotes the test cases selected through control

and data dependence analysis and dependencies due to

object-relations.

C. Determination of TDEP

 Regression test cases, TDEP, are determined based on an

analysis of the constructed SDG model. To select TDEP, we

first compute the forward slice on updated marked SDG

model. Our test case selection algorithm is based on graph

reachability algorithm proposed by Horwitz[19], where each

marked model element that are tagged during Update SDG

model step, is taken as the selection criterion.

 Our Proposed Algorithm 1 selects test cases from

SDG model. Algorithm takes updated SDG model denoted

by M and the set of tagged nodes denoted by Tagged

obtained during update SDG model step as input, and

produces the selected set of regression test cases as the

output, TDEP. Algorithm computes the set of all affected

nodes denoted by Affectednodes on basis of data and control

dependencies or dependencies arising due to object-relations

such as inheritance, the steps are given in lines 2 to 5 in

Algorithm. After all the affected nodes in SDG have been

identified through forward slicing, the test cases that

execute these affected nodes are selected for regression

testing. This is done by traversing the SDG model and

visiting each node in Affectednodes to determine the test

cases that execute these affected nodes.

V. EXPERIMENTAL STUDIES

 We have named our prototype tool as P-ReTEST

(Program Model Based Regression TEST case selector).We

have implemented a tool based on our proposed approach

for RTS.

A. P-ReTEST

 A Prototype Implementation of RTS P-ReTEST has

been developed using the programming language Java on a

Microsoft Windows 7 environment. The code size of P-

ReTEST is approximately 12 KLOC, excluding the external

packages that are used in implementation of RTS technique.

The user interface of P-ReTEST is developed using Java

Swing. In the following, we describe the various open

source software packages used to implement RTS.

__

Algorithm 1: Pseudocode to select Regression Test Cases

Input: M, Tagged

1. SDGSELECT(M, Tagged, TDEP)

2. For each node n in Tagged do

3. Find the node that are data and control dependent

4. Affectednode = NULL

5. Affectednode = Affected node U{all nodes that are

data and control dependent }

6. end

Volume III, Issue VII, July 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 118

7. if Affected node ≠ ᶲ then

8. for each node n € Affectednode do

9. Add all test cases that execute n to TDEP

10. End

Output: TDEP

__

_

B. Open source software packages used

 We have developed the tool P-ReTEST using the

following open source software packages: Eclipse [3],

Cygwin [1] and Graphviz [4]. We have used eclipse as an

IDE and CCygwin is used to provide Linux Environment on

window OS to run Linux command using a Java Program..

To graphically visualize the SDG model constructed by P-

ReTEST, we have used Graphviz.

C. Experiments

 In this section, we discuss the specific experimentation

carried out by us using P-ReTEST to measure the

effectiveness of our approach. We have used the following

programs namely, Climate Controller, Vending Machine,

Automated Teller Machine, and Power Window Controller

in our experimentation. The size of the considered

programs range from 400 to 900 LOC as given in Table 1.

Each of the considered programs had on an average of 25

test cases. For each program, we created several modified

versions. We have considered the different types of

modifications that are made in each version of a program

from Ren et al. [18]. We tested each modified version of a

program by running the original test cases on each modified

version of a program to note the number of test cases failed

after modification. Then, each time the test cases were

selected using P-ReTEST and also from Naslavsky‟s UML

based analysis. We repeated the experiment for each

modified version of each considered program in order to

remove any bias introduced in the results due to a specific

type of change. To measure the effectiveness of our RTS

technique, we have calculated the average percentage of

fault- revealing test cases selected by P-ReTEST and by

Naslavsky„s UML model analysis.

D. An Evaluation of the Effectiveness of P-ReTEST

 The aim of our experimental studies using P-ReTEST

was to evaluate the performance and effectiveness of our

RTS approach. An intuitive and appealing metric for

evaluating the effectiveness of an RTS technique is the size

of the selected regression test suite. Obviously, it is

desirable to have this number as small as possible.

However, for effective RTS, it is more important for a

technique not to miss out selecting any fault-revealing test

cases, and at the same time, to minimize instances of false

positives. Therefore, we have defined a new metric called

fault-revealing effectiveness. In the following, we briefly

describe these two metrics with which we evaluated the

effectiveness of P-ReTEST.

Percentage of Test-Cases Selected for RTS (ϒ) - This

measure indicates the size of the regression test suite as a

percentage of the initial test suite.

Fault-Revealing Effectiveness (Ω) - The fault-revealing

effectiveness metric can be defined as the percentage of test

cases selected by an RTS technique from the set of test

cases that fail when the valid test cases in the initial test

suite are run. That is, the fault-revealing effectiveness of the

test suite

Table I Summary of Regression Test Selection Results
Program Number

of LOC

Number

of test

cases

Percentage

of test

cases

selected by

- P-

ReTEST

Perc

enta

ge of

test

cases

selec

ted

by

Nasl

avsk

y’s

App

roac

h

Percen

tage

Increa

se

Climate

Controller

510 32 45 28 53.66

Vending

Machine

451 21 46 34 34.11

Automated

Teller
Machine

603 22 58 42 32.77

Power

Window
Controller

742 26 68 47 33.53

selected by a safe RTS technique is equal to 100%, that is, it

is equal to that of the initial test suite.

E. Result

 In this section, we describe the results obtained from

experimental studies carried out by us to determine the

effectiveness of our RTS technique.

 Table I and Table II summarize our experimental

results. Table I summarizes the percentage of test cases

selected by our approach and Naslavsky‟s approach. In

Table I, the example programs used in our experimental

studies is given in column 1 and column 2 shows the lines

of code (LOC) for each of our example programs. In

column 3, we list the total number of test cases in the initial

test suite and the percentage of test cases selected while

executing the entire test suite on the modified programs by

P-ReTEST and by Naslavsky‟s approach is reported in

Volume III, Issue VII, July 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 119

column 4 and column 5 respectively. The percentage

increase in the regression test suite size is given in column

6. P-ReTEST on an average selects 38.21 % more than the

only Naslavsky‟s approach. This increase may be due to the

fact that, our approach selects test cases based on code

analysis.

 Table II summarizes the average percentage of fault-

revealing test cases selected by both approaches. In Table II,

the test cases failed is given in column 2. The average

percentage of fault-revealing tests selected by P-ReTEST

and Naslavsky‟s approach is given in columns 3 and 4

respectively. The results show that P-ReTEST selects all

the fault-revealing test cases and the percentage of fault-

revealing test cases selected by P-ReTEST is on an average

of 27.89 % higher than a Naslavsky‟s UML -based analysis.

Table II Summary of Quality Results

Program

Name

Percentage of

test cases failed

Percentage of

fault-revealing

tests selected

by P-ReTEST

Percentage of

fault-revealing

tests selected

from

Naslavsky’s

UML -based

analysis

Climate

Controller

29 100 75

Vending

Machine

20 100 74

Automated

Teller Machine

21 100 78

Power Window
Controller

19 100 72

F. Analysis

 The results of Table I have been presented in the form of

a bar graph in Figure 4. In the figure 4, the y-axis shows the

percentage of selected test cases while the labels on the x-

axis represent the different programs. It can be observed

from Table I and Figure 4 that P-ReTEST selected around

45% to 68% of test cases for regression testing of the

modified programs. Considering the results for all the

programs, the number of test cases selected by P-ReTEST

was on average 37.34% greater than Naslavsky‟s approach

[26]. This increase can be explained by the fact that, in

addition to control dependence, our approach also selects

test cases based on system dependencies that are ignored by

Naslavsky‟s approach.

 The results of Table II have been presented as a bar

graph in Figure 5. In the figure, the y-axis shows the

percentage of failed test cases selected while the labels on

the x-axis represent the different programs. The results

show that P-ReTEST is able to select all the fault-revealing

test cases present in T. In other words, the regression test

suite selected by P-ReTEST has the same fault-revealing

effectiveness Ω as the initial test suite. The fault-revealing

effectiveness of Naslavsky‟s approach is lower by 26.36%

on average compared to ReTEST.

Fig. 4. Percentage of regression test cases selected (ϒ)

Fig. 5. A comparison of the fault-revealing effectiveness (Ω) of

P_ReTEST and Naslavsky‟s approach.

CONCLUSION

We have presented an approach for regression test selection

of object-oriented programs that selects test cases by

analyzing source code. We have applied the proposed RTS

technique to small example programs to prove the

applicability of our approach. The results of our study show

the effectiveness in selecting more fault-revealing test cases

from the original test suite. In our empirical studies, we

observe an average increase of 26.36% selection of fault-

revealing test cases in P-ReTEST as compared to

Naslavsky‟s UML model based analysis.

REFERENCES

[1] http://www.cygwin.org/.

[2] http://www.bugzilla.org/.

[3] http://www.eclipse.org/.

[4] http://www.graphviz.org/.
[5] R. V. Binder, “Testing Object-Oriented Systems:

Models”, Patterns, and Tools, Addison-Wesley, (2003).

http://www.cygwin.org/
http://www.bugzilla.org/
http://www.eclipse.org/
http://www.graphviz.org/

Volume III, Issue VII, July 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 120

[6] L. Briand, Y. Labiche and S. He, “Automating Regression
Test Selection Based on UML Designs”, Journal of

Information and Software Technology, (2009), pp. 16-30.

[7] H. Do, S. Mirarab, L. Tahvildari and G. Rothermel, “The
Effects of Time Constraints on Test Case Prioritization:A

Series of Controlled Experiments”, IEEETransactions on

Software Engineering, vol. 36, no. 5, (2010), pp. 593-617.
[8] M. Harrold, J. Jones, T. Li, D. Liang and A. Orso,

“Regression Test Selection for Java Software”, In

Proceedings of the 16th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages

and Applications, (2001), pp. 312-326.
[9] S. Horwitz, T. Reps and D. Binkley, “Interprocedural

Slicing Using Dependence Graphs”, Transactions on

Programming Languages and Systems, vol. 12, no. 1,
(1990), pp. 26-60.

[10] Y. K. Jang, M. Munro and Y. R. Kwon, “An Improved

Method of Selecting Regression Tests for C++

Programs”, Journal of Software Maintenance: Research

and Practice, vol. 13, (2001), pp. 331-350.

[11] G. Kapfhammer, “The Computer Science Handbook”,
Chapter Software Testing, (2004), CRC Press, Boca

Raton, FL.

[12] D. Kung, J. Gao, P. Hsia, Y. Toyoshima and C. Chen
“Firewall Regression Testing and Software Maintenance

of Object - Oriented Systems”, Journal of Object-

Oriented Programming, (1997).
[13] H. Leung and L. White. Insights into regression testing. In

Proceedings of the Conference on Software Maintenance, pages

6069, 1989.
[14] N. Wilde and R. Huitt Maintenance support for object-oriented

programs, IEEE Transactions on Software

Engineering,December 1992.
[15] Mr. Rohit N. Devikar, Prof. Manjushree. D. Laddha,

“Automation of Model-based Regression Testing”,

International Journal of Scientific and Research Publications,
Volume 2, Issue 12, December 2012.

[16] G. Kapfhammer. The Computer Science Handbook, chapter on

Software testing. CRC Press, Boca Raton, FL, 2nd edition,
2004.

[17] S. Yoo, M. Harman, “Regression Testing Minimization,

Selection and Pri- oritization: A Survey” Softw. Test. Verif.
Reliab. 2007,Wiley InterScience.

[18] X. Ren, O. C. Chesley and B. G. Ryder, “Identifying Failure

Causes in Java Programs: An Application of Change Impact
Analysis”, IEEE Transactions on Software Engineering, vol. 32,

no. 9, (2006), pp. 718 – 732.

[19] A. Orso, N. Shi, and M. Harrold. Scaling regression testing to
large software systems. In Proceed- ings of the 12th ACM

SIGSOFT Twelfth Interna- tional Symposium on Foundations

of Software Engineering, pages 241251, November 2004.
[20] GUAN, J., OFFUTT, J.,AND AMMANN, P. 2006. An

industrial case study of structural testing applied to safety-

critical embedded software. In Proceedings of the ACM/IEEE
International Symposium on Empirical Software Engineering.

ACM, New York, NY, 272–277.

[21] ROTHERMEL, G.AND HARROLD, M. 1996. Analyzing
regression test selection techniques. IEEE Trans. Softw. Eng.

22, 8, 529–551.

[22] LIANG, D.AND HARROLD, M. 1998. Slicing objects using
system dependence graphs. In Proceedings of the International

Conference on Software Maintenance. IEEE Computer Society,
Los Alamitos, CA,358– 367.

[23] CLEVE, A., HENRARD, J., AND HAINAUT, J. 2006. Data

reverse engineering using system dependency graphs. In
Proceedings of the 13th Working Conference on Reverse

Engineering. IEEE Computer Society, Los Alamitos, CA, 157–

166.
[24] AHO, A., SETHI, R.,AND ULLMAN, J. 2008. Compilers:

Principles,Techniques and Tools 2nd Ed. Dorling Kinder- sley

(India) Pvt Ltd.

[25] FERRANTE,J.,OTTENSTEIN,K.,ANDWARREN,J.1987.The
program dependence graph and its use in optimization. ACM

Trans. Program. Lang. Syst. 9, 3, 319–349.

[26] L. Naslavsky, H. Ziv and D. J. Richardson, “A Model-Based
Regression Test Selection Technique”, In 25th IEEE

International Conference onSoftware Maintenance, (2009).

Edmonton, Alberta, Canada.

