IJLTEMAS

а

The Union of a Cycle of Length 3 and A Path are Graceful

Amiya Kumar Behera¹, Debdas Mishra², Purna Chandra Nayak³

¹Department of Mathematics, Institute of Technical Education and Research ,S O A University, Khandagiri, Bhubaneswar, , Odisha, India

²Department of Mathematics, C.V Raman College of Engineering ,Madura ,Janla , Bhubaneswar,Odisha , India ³Department of Mathematics ,Bhadrak, Autonomous college , Bhadrak,Odisha ,India

Abstract- In this paper we prove that the union of a cycle of length 3 and a path are graceful.

vertices. Then the following functions produce graceful labelling for the join of C_3 and p_n

$$f(u_i) = \begin{cases} 0, & i = 1 \\ n+1, & i = 2 \\ n+2, & i = 3 \end{cases}$$
$$f(v_j) = \begin{cases} 0, & , j = 1 \\ n - \frac{j}{2} + 1 & j = 2, 4, 6, 8, \dots, \\ \frac{j-1}{2} & , j = 3, 5, 7, 9, \dots, \end{cases}$$

where U_i denotes the vertices of the cycle C_3 fori =1,2,3 and V_j denotes the vertices of the path .Here the union is taken in such a way that U_i coincides with V_j for i = j=1, where U_i for i = 1, 2, 3 denote the vertices of the cycle C_3 and V_j for j = 1, 2, 3 ------------, n ($n \ge 2$) denote the vertices of a path P_n .

Proof: As the vertices in the cycle C_3 possess the label 0, n + 1, and n + 2, and they are adjacent to each other. So the edges on C_3 have the labelsn + 1, n + 2 and 1. As the vertices with labels 0 and n are adjacent in p_n we get an edge with label n. For any positive integer k the vertices V_{2k-1} gets labelk-1, V_{2k} gets label n-k, and V_{2k+1} gets label k. So the edges (V_{2k-1}, V_{2k}) and (V_{2k}, V_{2k+1}) have the labels n + 1-2kand n - 2k respectively. So putting k = 1, 2, 3,....,n, we find that the labels of the edges on the path p_n are n, n - 1, n - 2, n - 3, n - 4, ... 3, 2, respectively. So we find that the edge labels of the join graph constitute the set {1, 2, 3,...., n + 2}. Hence the vertex label/defined above is graceful.

Key word: Graceful Labelling, Path, Cycle

I. INTRODUCTION

A vertex labelling (or valuation) of a graph G=(V;E) is an assignment f of labels to the vertices of G that induces for each edge $uv \in E(G)$ a label depending on the vertex labels f(u) and f(v). Let G be a graph with q edges and let f : $V(G) \rightarrow \{0, 1, \dots, q\}$ be an injection. The vertex labelling is called a graceful labelling if to each edge uv the absolute value |f(u)-f(v)| is assigned as its labeland the resulting edge labels are mutually distinct . A graph possessing a graceful labelling is called a graceful graph. By a path we mean a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list.Here we have considered a simple path where exactly two vertices are of degree 1 and the rest of the vertices are of degree two .A cycle is a closed path of non zero length that does not have repeated edges. Fruchtand Salinas [1985] have proved that $C_4 \cup p_n$ is graceful, for every $n \ge 3$, and they have conjectured that $C_s \cup p_n$ is graceful if $n + s \ge 7$. Deshmukh [1995] has established thefollowing results

1. $c_3 \cup p_n$ is graceful for $n \ge 4$.

2. $c_{2x+1} \cup p_x$ is graceful for $x \ge 2$.

We establish the following results in this paper.

- 1. The join of a cycle containing three vertices and a path containing two or more vertices are graceful.
- 2. The disjoint union of a cycle containing three vertices and a path containing two or more vertices are graceful.
- 3. $C_3 \cup K_{1,1} \cup P_n$ is graceful for $n \ge 2$.

Results:

Theorem-2.1: Let C_3 be a cycle of length three and p_n be apath consisting of two or more

Figure 1: Join of C_3 and P_9 is graceful.

Figure 2: The join of c_3 and p_2 is graceful

Theorem 2.2:

 $C_3 \cup P_n$ is graceful for $n \ge 2$.

Proof:Let $V(C_3) = \{u_1, u_2, u_3\}$ is the vertex set of cycle C_3 .

Let $V(P_n) = \{v_{1,v_2}, v_{3,----,v_n}\}$ is the vertex set of the path P_n . Let q = n - 1 denotes the total number of edges by the union of C_3 and P_n . For every u_i , i = 1, 2, 3 and v_j , j = 1, 2, ---, n, their vertex labelling is denoted by the functions $f(u_i)$, $f(v_j)$ respectively which are defined as follows. The vertex labelling of C_3 is given by

$$f(u_i) = \begin{cases} 0 & , & i = 1 \\ 1 & , & i = 2 \\ n & , & i = 3 \end{cases}$$

The vertex labelling of P_n is given by

$$f(v_{j}) = \begin{cases} \frac{j-1}{2} + 2 & , j \text{ is odd} \\ n - \frac{j}{2} & , j \text{ is even} \end{cases}$$

The first value of $f(v_j)$ denotes the labelling of the vertices which are lying below and the second value of $f(v_j)$ denotes the labelling of the vertices lying above the path P_n . Now the edge labelling of C_3 is given by $f^*(u_1u_2)=1$, $f^*(u_2u_3)=n-1$, $f^*(u_3u_1)=n$ and the edge labelling of P_n is given by $f^*(v_1v_2)=n-3$, $f^*(v_2v_3)=n-4$, $f^*(v_3v_4)=n-5$, ..., $f^*(v_{j-1}, v_j)=2$. The cycle C_3 has edge labelling consisting of the $\{1, n-1, n\}$ and the path P_n has the edge labelling consisting of the set $\{n-3, n-4, n-5, ----, 3, 2\}$.so $C_3 \cup P_n$ has the edge labelling consisting of the set $\{n, n-1, n-3, n-4, ----, 3, 2, 1\}$. Hence $C_3 \cup P_n$ is graceful for $n \ge 2$

IJLTEMAS

Example-2.2:

Figure $3: C_3 \cup P_7$ is graceful

Theorem 2.3: $C_3 \cup K_{1,1} \cup P_n$ is graceful for $n \ge 2$.

Proof :Let $V(C_3) = \{u_1, u_2, u_3\}$ is the vertex set of cycle C_3 .

Let $V(P_n) = \{v_{1,}v_2, v_3, ----, v_n\}$ is the vertex set of the path P_n .Let q = n denotes the total number of edges by the join of C_3 and P_n through $K_{1,1}$. Here C_3 is joined with P_n by $K_{1,1}$ such that one end of $K_{1,1}$ coincides with u_2 of C_3 whose vertex labelling is 1 while the other end coincides with v_2 of P_n whose vertex labelling is n-1. For every u_i , i = 1, 2, 3 and v_j , j = 1, 2, ---, n, their vertex labelling is denoted by the functions $f(u_i)$, $f(v_j)$ respectively which are defined as follows. The vertex labelling of C_3 is given by

$$f(u_i) = \begin{cases} 0 & , & i = 1 \\ 1 & , & i = 2 \\ n & , & i = 3 \end{cases}$$

Illustration 3.3:

The vertex labelling of P_n is given by

$$f(v_j) = \begin{cases} \frac{j-1}{2} + 2 & , \ j \ is \ odd \\ n - \frac{j}{2} & , \ j \ is \ even \end{cases}$$

Now the edge labelling of C_3 is given by $f^{*}(u_{1}u_{2}) = 1, f^{*}(u_{2}u_{3}) = n-1, f^{*}(u_{3}u_{1}) = n$ and the edge labelling of P_n is given by $f^{*}(v_{1}v_{2}) = n-3, f^{*}(v_{2}v_{3}) = n-4, f^{*}(v_{3}v_{4}) = n-5$, -----, $f^*(v_{i-1}, v_i) = 2$. Again the edge labelling for the cycle C_3 has edge labelling consisting of the set $\{1, n-1, n\}$ and the path P_n has the edge labelling consisting of the set $\{n - n\}$ 3, n - 4, n - 5, - - - - - 3, 2. Again the edge labelling for $K_{1,1}$ is $f^*(u_2v_2) = n - 2$.So $C_3 \cup K_{1,1} \cup P_n$ has the edge labelling consisting of the set $\{n, n-1, n-1\}$ 2, n-3, n-4, ----, 3, 2, 1. Hence $C_3 \cup$ $K_{1,1} \cup P_n$ is graceful.

Figure 4 : $C_3 \cup K_{1,1} \cup P_7$ is graceful.

REFERENCE

- [1] Deshmukh , U. N, Ph.D. Thesis, University of Bombay, 1995.
- [2] FruchtR.W,and Salinas L.C, Graceful numbering of snakes with constraints on the first label, ArsCombinatoria 20 (1985) 143–157.
- [3] Graceful labelling of the union of paths and cycles S.A. Choudum, S. PitchaiMuthuKishore /Discrete Mathematics 206 (1999) 105–117.
- [4] Ibrahim Mousa. M, 2010, "An algorithm for odd graceful labelling of the union of paths and cycles," International journal on application of graph theory in wireless adhoc network and sensor networks, vol-2,112-119.