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I. INTRODUCTION 

t is an important goal in mathematical analysis to 

establish symmetry properties of symmetry properties 

of solutions of boundary value problems both from 

theoretical as well as the application point of view. To 

prove the symmetry J. Serrin [17] introduced the method 

of moving planes in the differential equations. It has been 

previously used by A. D.  Alexandroff  [12] in differential 

geometry.  In 1979 the same method was introduced by 

Gidas, Ni and Nirenberg [8],[9] to obtain the symmetry 

results and monotonicity for positive solutions of 

nonlinear elliptic equations. Yi Li and Wei-Ming Ni [13] 

proved the symmetry results for the conformal scalar 

curvature equation and Matukuma equation.  Guo and 

Wei [11] use the moving plane method to obtain the 

necessary and sufficient conditions for the radial 

symmetry of positive solution of semilinear equation with 

singular nonlinearity. Recently Dhaigude and Patil [5], [6] 

[7] studied radial symmetry of positive solutions of 

semilinear elliptic boundary value problem in unit ball 

and in R
n
, by using moving plane method. In this paper 

we study the radial symmetry of classical solutions for 

semilinear elliptic boundary value problems of the type, 

∆u +  V(|x|)  e
u    

=    0  in R
3
                                        1.1 

                u(x) → 0         as       |x|→ ∞                        1.2 

These types of problems are studied by Yuki Naito [15] in 

R
2
. Problems of this kind arise in geometry and various 

branches of physics , see Chanillo and Kiessling [1]. In 

the case where V is a constant coefficient, we refer to 

Chen and Li [3]. In the case where V (r) is a variable 

coefficient, we refer to Chen and Li [4]. Also Chen and Li 

[2] explained and used moving plane method in proving 

symmetry. We organise the paper as follows: In section 2, 

the method of moving plane is explained. In section 3, the 

preliminary results and some useful lemmas are proved. 

The symmetry result and corollaries are proved in the last 

section. 

II. MOVING PLANE METHOD 

We use the moving plane method as follows. 

Suppose that R
n
 is an Euclidean space. Let u(x) be a 

positive solution of a certain partial differential equation 

in R
n
. To prove u(x) is symmetric and monotone in the 

given direction, assign that direction as X1 axis. We define 

Tλ = {x = (x1, x2, ..., xn): x1 = λ}for a real number λ. This 

is the plane perpendicular to X1 -axis and it is the plane 

that we will move with X1 -axis.  

Let Ʃλ denote the region to the left of the plane in Ω i.e. Ʃλ  

= {x : x1 < λ , x  Ω }. The reflection of the point x = (x1, 

x2, ..., xn), about the plane Tλ is denoted by  x
λ 
 and it is 

 x
λ
 = (2 λ – x1 , x2,  x3, ..., xn). We compare the values of 

u(x) at x and x
λ
. To show that u(x) is symmetric about 

plane Tλ, We have to show that u(x) = u(x
λ
). For this 

suppose that  

 wλ(x) = u(x) -  u(x
λ
).  

To show that there exist some λ0 such that wλ0(x) = 0 for 

all x ∈ Ʃλ0. We consider following steps. 

Step-I: We first show that for λ sufficiently negative we 

have, wλ(x) ≥ 0 for all x ∈ Ʃλ. 

Then we are able to start of from the neighbourhood of x1 

= - ∞ and move the plane Tλ along the x1 direction to the 

right as long as      wλ(x) ≥ 0 holds for all x ∈ Ʃλ. 

Step-II: We continuously move this plane up to it’s 

limiting position. 

 Define λ0 = sup {λ : wλ(x) ≥ 0 for all x ∈ Ʃλ }. We prove 

that u is symmetric about the plane Tλ0. i.e. wλ0(x) = 0 for 

all x ∈ Ʃλ0. This is usually carried out by the method of 

contradiction. We suppose wλ0(x) ≠ 0, then there exist λ > 

λ0 such that wλ0(x) < 0. This is contradiction to the 

definition of λ0. From this we can see that key to the 

method of moving plane is to establish the inequality w-

λ(x) ≥ 0 for all x ∈ Ʃλ. 

Before proceeding to the main result we shall set forth 

some preliminaries and hypotheses. 

2.1 Preliminary Results. 

I 
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Lemma 2.1 [14]  Let Ω be unbounded domain in  R
3
.  

Suppose that u ≠ 0 satisfies  L(u)  ≤  0 in Ω and u  ≥  

0 on  𝜕Ω 

where  

𝐿 ≡  𝑎𝑖𝑗   
𝑛
𝑖,𝑗  =1    𝑥  

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
 𝑢 +  𝑏𝑖

𝑛
𝑖=1  𝑥  

𝜕

𝜕𝑥𝑖
 𝑢 + 𝑐 𝑥 𝑢. 

Suppose furthermore that there exist a function w such 

that w > 0 on  𝛺 ∪  𝜕Ω and L(w) ≤ 0 in Ω.  

If     
𝑢(𝑥)

𝑤(𝑥)
   → 0 as |x| → ∞ , x ∈ Ω,  then  u > 0 in Ω. 

Theorem 2.1 

Let u(x) satisfies differential inequality L(u) ≥ 0  in a 

domain D where L is uniformly elliptic. If there exist a 

function w(x) such that w(x) > 0 on 𝐷 ∪  𝜕 𝐷, 

           L(w) ≤ 0  in D, 

then  
𝑢(𝑥)

𝑤(𝑥)
   cannot attain a non negative maximum at a 

point p  on 𝜕 𝐷 , which lies on the boundary of a ball in D 

and 
𝑢(𝑥)

𝑤(𝑥)
  if is not constant then,   

𝜕

𝜕𝜈
  

𝑢

𝑤
 > 0 at P, where   

𝜕

𝜕𝜈
  is any outward directional derivative. 

Lemma 2.2 [16] {Hopf Boundary lemma} : Suppose 

that Ω satisfies the interior sphere condition at 𝑥0  𝜖 Ω. Let 

L be strictly elliptic with c  ≤ 0 . If   𝑢 𝜖 𝐶2  𝛺 ∩ 𝐶(Ω ) 

satisfies   L(u) ≥ 0  and  max
Ω  𝑢 𝑥 = 𝑢(𝑥0) then either              

u = u(x0) on Ω                                                          2.1 

or 

 
𝑢 𝑥 −  𝑢(𝑥0 +  𝑡 𝜈)

𝑡
 

𝑡→0

lim ⁡𝑖𝑛𝑓

> 0 

 

for every direction  𝜈, pointing into an interior sphere. 

If 𝑢 ∈  𝐶1 ⊂  Ω ∩ {0} then, 

                     
𝜕𝑢

𝜕𝜈
  𝑥0  < 0 

III. MAIN RESULT 

In this section, first we prove some lemmas which are 

useful to prove our main result. We define the following 

function,       

      𝑤 𝑥 =  
1

3𝜔3
 ∫  

1

|𝑥−𝑦|
−  |𝑦| 

𝑅3  𝑓 𝑦 𝑑𝑦              3.1 

Lemma 3.1 Let  𝑓 ∈  𝐿∞  𝑅3  ∩   𝐿1   𝑅3   Let w be as 

defined in 3.1. Then  

lim
|𝑥|→∞

𝑤(𝑥)

log |𝑥|
 =  

1

3𝜔3

   𝑓 𝑦 𝑑𝑦
𝑅3

                       3.2 

Proof: To prove the result, 

lim
|𝑥|→∞

𝑤(𝑥)

log |𝑥|
 =  

1

3𝜔3

   𝑓 𝑦 𝑑𝑦
𝑅3

     

we have to prove that, 

lim
|𝑥|→∞

 

1
3𝜔3

 
1

|𝑥 − 𝑦|
−  |𝑦| 

log |𝑥|𝑅3
 𝑓 𝑦 𝑑𝑦

=  
1

3𝜔3

    𝑓 𝑦 𝑑𝑦
𝑅3

 

To complete the proof it is sufficient to prove that, 

∫   
1

log  𝑥  |𝑥−𝑦| 
− 

|𝑦|

log |𝑥|
−  1 𝑓 𝑦 𝑑𝑦

𝑅3  → 0  as |x| →∞.       

We know that 𝑓 ∈  𝐿∞  𝑅3  means for any 𝜖 > 0  there 

exist R > 0 such that  

 

  𝑓 𝑦  𝑑𝑦  < 𝜖                                              3.3

 𝑦 >𝑅

 

For simplicity we divide the region of integration in to 

three parts D1, D2 and D3 where                                                                   

             𝐷1 =  𝑦 𝜖 𝑅3 ∶  𝑦 − 𝑥   ≤ 1  

𝐷2 =  𝑦 𝜖 𝑅3 ∶  𝑦 − 𝑥  >  1 𝑎𝑛𝑑  𝑦 ≤   𝑅   

𝐷3 =  𝑦 𝜖 𝑅3 ∶  𝑦 − 𝑥  >  1 𝑎𝑛𝑑  𝑦  >    𝑅   

All the sub regions D1, D2  and D3  forms partition on R
3
. 

Therefore, 

                I = I1 + I2 + I3                                             3.4 

where I1 , I2 and   I3  are integrals over the region D1 ,  D2 

and D3 respectively. 

We have to show that I → 0 as |x| → ∞. 

For this purpose we shall determine I1, I2 and   I3 

separately   

𝐼1  =  |   
1

log 𝑥 |𝑥 − 𝑦|
−  

 𝑦 

log |𝑥|
−  1 

𝐷1

𝑓 𝑦 𝑑𝑦 |   

≤   |  
1

log 𝑥 |𝑥 − 𝑦|
−  

 𝑦 

log |𝑥|
−  1 

𝐷1

   𝑓 𝑦 |𝑑𝑦 

≤ ∫  
1

 log 𝑥  𝑥−𝑦 
  𝑓 𝑦 |  𝑑𝑦 +  ∫  

 𝑦 

log  𝑥 
+  1 

𝐷1
     

𝐷1
|𝑓 𝑦 |𝑑𝑦  

≤    
1

 log 𝑥  𝑥 − 𝑦 
|𝑓 𝑦 |𝑑𝑦

𝐷1

  +   𝐶  |𝑓 𝑦 |𝑑𝑦

𝐷1

 

≤    
1

 log 𝑥  𝑥 − 𝑦 
|𝑓 𝑦 |𝑑𝑦

𝐷1

  +  𝐶    |𝑓 𝑦 |𝑑𝑦

𝐷1
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≤  
| 𝑓 𝑦  |𝐿∞

log |𝑥|
   

1

|𝑥 − 𝑦|𝐷1

  𝑑𝑦 𝐶    |𝑓 𝑦 |𝑑𝑦

𝐷1

 

where  

C = 
 𝑦 

log  𝑥 
+  1 

We evaluate 

 
1

|𝑥 − 𝑦|
 𝑑𝑦

𝐷1

 

where D1 is a sphere |x – y| ≤1. 

we have   

 
1

|𝑥 − 𝑦|
 𝑑𝑦 = 2𝜋

𝐷1

 

Therefore |I1|    C   

To estimate I2, we obtain 

 𝐼2 = |   
1

log 𝑥 |𝑥 − 𝑦|
−  

 𝑦 

log |𝑥|
−  1 

𝐷2

𝑓 𝑦 𝑑𝑦 | 

≤    
1

log 𝑥  𝑥 − 𝑦 
−  

 𝑦 

log 𝑥 
−  1  |

𝐷2

𝑓 𝑦 |𝑑𝑦  

| 𝑓 𝑦  |𝐿∞ 𝑅3 

log |𝑥|
   

1

|𝑥 −  𝑦|𝐷2

 − log 𝑥 −  |𝑦|  𝑑𝑦 

We note that  |
1

 𝑥−𝑦 
 – log |𝑥| | < C, for |y| ≤  R 

and ∫  𝑦 𝑑𝑦 <   ∞
 𝑦 ≤𝑅

 

So I2 tends to zero as |x| → ∞. 

To evaluate I3 , consider  

 𝐼3 =   |   
1

log 𝑥 |𝑥 − 𝑦|
−  

 𝑦 

log |𝑥|
−  1 

𝐷3

𝑓 𝑦 𝑑𝑦 | 

  ≤ ∫   
1

log 𝑥  𝑥−𝑦 
−  

 𝑦 

log  𝑥 
−  1  |

3
𝑓 𝑦 |𝑑𝑦 

Since in D3 |x – y |  > 1 and |y|  >  R 

|I3 |  <  C𝜖.   

Thus |I| ≤  2 C𝜖. 

Since I1, I3 are finite integrals and I2 = 0 their sum tends to 

zero as |x|→∞.Thus I → 0 as |x|→∞. 

Hence the result is obtained. 

Lemma 3.2 (Liouville’s theorem) Assume that w  be 

harmonic function in R
3
 and satisfies w(x) = o(|x| ) as |x| 

→ ∞. Then w must be constant.  

Proof: To prove w is constant, prove that Dw = 0. Fix x0 

in R
3
. Define  

𝐵𝑟 𝑥0 =  𝑦  𝜖 𝑅3 ∶ 𝑦 − 𝑥0 < 𝑟   

For some r  >  0. Since the gradient Dw is also harmonic 

function in R
3
, it follows by mean value and divergence 

theorems that  

𝐷𝑤 𝑥0 =  
1

4𝜋𝑟3
  𝐷𝑤. 𝑑𝑥

𝐵𝑟(𝑥0)

 

                            =  
1

𝜔3(𝑅3)
 ∫ 𝑤. 𝜈 𝑑𝑠

𝜕𝐵𝑟(𝑥0)
 

where 𝜈 is  outward unit normal to the surface 𝜕𝐵𝑟(𝑥0). 

 𝐷𝑤 𝑥0  = |
1

𝜔3(𝑅3)
 ∫ 𝑤. 𝜈 𝑑𝑠|

𝜕𝐵𝑟(𝑥0)
  

≤  
3

𝑅2
 𝑆𝑢𝑝 
𝜕𝐵𝑟(𝑥0)

   𝑤 → 0 𝑎𝑠  𝑅 → ∞ 

∴ |𝐷𝑤|  → 0  𝑎𝑠 𝑅 → ∞ 

∴  𝐷𝑤 = 0  𝑖𝑛  𝑅3 

So w is constant.   

Define 

 Λ =   𝜆 𝜖  0, ∞ : 𝑉𝜆 𝑥 > 0  for 𝑥 𝜖 Σ𝜆 .  

 Lemma 3.3   Let u be solution of   1.1 satisfying 

𝑢+ 𝜖 𝐿∞ (𝑅3)  and 

 0 ≤  
1

3𝜔3
∫ 𝑉  𝑥  𝑒𝑢  𝑑𝑥 =  𝛽 < ∞
𝑅3  

then   lim 𝑥 →∞
𝑢(𝑥)

log |𝑥|
=  lim 𝑥 →∞

𝑢(𝑥𝜆 )

log |𝑥|
= 𝛽 

Proof:  Define the function  

𝑤 𝑥 =  
1

3 𝜔3
∫  

1

 𝑥−𝑦  
−  𝑦  𝑉 𝑦 𝑒𝑢(𝑦)

𝑅3 𝑑𝑦  in R
3
          ( 3.6) 

The function w(x) is well defined and by lemma in [11] 

we have 

 ∆w = V( x )eu  in R
3
. 

From equation (3.5) and 𝑢+ ∈  𝐿∞ 𝑅3  

𝑣𝑒𝑢 ∈  𝐿∞ 𝑅3 ∩  𝐿1 𝑅3   

Then by lemma 3.1 

lim
|𝑥|→∞

𝑤(𝑥)

log |𝑥|
=  

1

3𝜔3

 𝑣 𝑦 𝑒𝑢𝑑𝑦
𝑅3

 =  𝛽 
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Consider the function 

u(x) + w(x) = v(x) 

Operating ∆ on both sides, we have 

Δ 𝑢 𝑥 +  Δ 𝑤 𝑥 =  Δ 𝑣 𝑥                              (3.7) 

We have ∆ 𝑢 𝑥 =  − ∆ 𝑣(𝑥)𝑒𝑢   and   

∆ 𝑤 𝑥 =  𝑣  𝑥  𝑒𝑢  

∆ 𝑣 𝑥 =  0  in R
3
. 

Also v(x) is o(|x|) , as |x|→∞ . By lemma 3.2 we know 

that v is constant say c. Divide equation (3.7) by log |x|  

and taking limit of both side as |x| →∞ we get  

lim
|𝑥|→∞

𝑐

log |𝑥|
= lim

|𝑥|→∞

𝑢(𝑥)

log |𝑥|
+ lim

|𝑥|→∞

𝑤(𝑥)

log |𝑥|
 

0 = lim
|𝑥|→∞

𝑢(𝑥)

log |𝑥|
+ lim

|𝑥|→∞

𝑤(𝑥)

log |𝑥|
 

lim
|𝑥|→∞

𝑢(𝑥)

log |𝑥|
=  − lim

|𝑥|→∞

𝑤(𝑥)

log |𝑥|
=  − 𝛽  

Also 

lim
|𝑥|→∞

𝑢 𝑥𝜆 

log |𝑥|
=  − 𝛽 

Suppose that V(r) is locally H𝑜 lder continuous function 

on [0, ∞) and that V(r) is nonincreasing in  r ≥ 0. 

Lemma 3.4 Let λ > 0 then Vλ satisfies,  

Δ𝑉𝜆 𝑥 +  𝐶𝜆 𝑥 𝑉𝜆 𝑥 ≤ 0   in Ʃλ  

where Cλ(x) satisfies Cλ(x) = O(|x|
-𝛿) as |x| →∞ for some 

𝛿 ≥ 3. 

Proof: Let V(r) is nonincreasing in r and         𝑥𝜆  > |𝑥| 

for 𝑥 ∈   𝜆   and λ > 0 we have  

0 =   Δ 𝑢 𝑥 +  𝑉( 𝑥 )𝑒𝑢(𝑥) −  Δ 𝑢 𝑥𝜆 +  𝑉(|𝑥|𝜆)𝑒𝑢(𝑥𝜆 )   

 = Δ(𝑢 𝑥 −  𝑢(𝑥𝜆) ) +  𝑉( 𝑥 )𝑒𝑢(𝑥) - 𝑉(|𝑥|𝜆)𝑒𝑢(𝑥𝜆 ) 

≥ Δ 𝑉𝜆  𝑥 +   𝑉  𝑥   𝑒𝑢(𝑥) − 𝑒𝑢 𝑥𝜆                     ≥

 Δ 𝑉𝜆  𝑥 + 𝐶𝜆 𝑥 𝑉𝜆 𝑥  

where, 

𝐶𝜆 𝑥 = 𝑉( 𝑥 )𝑒𝑢 𝑥𝜆  +𝑡(𝑢 𝑥 − 𝑢(𝑥𝜆 )𝑑𝑡 

Take 𝜖 > 0 so small that 𝛼 + 𝛽 − 𝜖 > 3. By lemma 3.3 

we have,  
𝑢(𝑥)

log |𝑥|
 ≤ −(𝛽 −  𝜖). 

Therefore, 𝑢 𝑥 ≤ − log 𝑥  (𝛽 − 𝜖). 

Also,𝑢 𝑥𝜆 ≤  − log 𝑥 (𝛽 + 𝜖) 

We have 𝑟𝛼  𝑉 𝑟 <  ∞𝑟 →∞
lim ⁡𝑠𝑢𝑝

 for 𝛼 > 0. 

∴ 𝐶𝜆 𝑥 = 𝑉( 𝑥 )  𝑒𝑢 𝑥𝜆  +𝑡 𝑢 𝑥 − 𝑢(𝑥𝜆 ) 𝑑𝑡
1

0

 

∴ 𝐶𝜆 𝑥 = 𝑂( 𝑥 )−𝛿  where 𝛼 +  𝛽 −  𝜖 = 𝛿 as |x|→∞. 

Remark 3.1 By virtue of lemma 3.4 we can take 𝑅0 >  𝜖 

so large that 
1

1+ 𝑥 log
1

|𝑥|

 ≥  𝐶𝜆(𝑥) 

Lemma 3.5 Let 𝜆 > 0. If 𝑉𝜆  > 0 on  𝜆  𝐵𝑅0
     , then 𝜆 ∈ Λ. 

Proof: By lemma 3.4 and assumption we have    

Δ𝑉𝜆 𝑥 +  𝐶𝜆 𝑥 𝑉𝜆 𝑥 ≤ 0   in Ʃλ \  𝐵𝑅0
       

𝑉𝜆  ≥ 0 on  𝜕 Ʃλ \  𝐵𝑅0
        

Let 𝑤(𝑥) = 
1

 𝑥 
− log |𝑥|. Then w(x) satisfies  

∆ 𝑤 +  
1

|𝑥|
= 0 

∴ ∆𝑤 + 𝐶𝜆  𝑥 𝑤 ≤ 0 in Ʃλ \  𝐵𝑅0
      

By lemma 3.3, 𝑤 > 0 in Σ𝜆\𝐵𝑅0
                

∴  
𝑣𝜆  𝑥 

𝑤 𝑥 
 → 0  as |x| →∞ 

By lemma 2.1 we have  

𝑉𝜆   𝑥 >  0 in Ʃλ \  𝐵𝑅0
     . 

𝑉𝜆   𝑥 >  0 in Ʃλ. 

∴ 𝜆 𝜖 Λ. 

Lemma 3.6 Let 𝜆 ∈ Λ then 
𝜕𝑢

𝜕𝑥1
< 0                            

Proof: By lemma 3.4 we have  

Δ𝑉𝜆 𝑥 +  𝐶𝜆 𝑥 𝑉𝜆 𝑥 ≤ 0   in Ʃλ. 

Since Vλ = 0 on Tλ, 

𝜕𝑉𝜆

𝜕𝑥1
< 0 on Tλ. (By Hopf boundary maximum lemma) 

𝜕𝑢

𝜕𝑥1
=

1

2
 
𝜕𝑉𝜆

𝜕𝑥1
< 0 on Tλ. 

Now we will state and prove main theorem about 

symmetry. 

Theorem 3.1 Assume that V satisfies, 

𝑟𝛼 . 𝑉 𝑟 <  ∞𝑟→∞ 
lim ⁡𝑠𝑢𝑝

  for some, 𝛼 > 0                (3.9) 

Let u be the solution of [1.1] satisfying 𝑢 ∈  𝐿∞ 𝑅3 , 

where 𝑢+ = max⁡{𝑢, 0} and  

0 <  
1

3𝜔3
∫ 𝑉  𝑥  𝑒𝑢𝑑𝑥 =  𝛽 < ∞
𝑅3                     (3.10) 
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If  𝛼 + 𝛽 > 3  then u must be radially symmetric and 

decreasing.  Furthermore, assume that V is not constant  

then u must be radially symmetric about origin and 

𝑢𝑟 < 0 for r > 0. 

 Proof: Let u be the solution of [1.1] satisfying                

u
+
 ∈ 𝐿∞   𝑅3 .   and equation (3.10) . From lemma 3.3 we 

have, 

Lim
|𝑥|→∞

𝑢(𝑥)

|𝑥|
 =  − 𝛽 

∴ lim
|𝑥|→∞

𝑢(𝑥) =  −∞ 

Then there exist R1 > R0 such that  
max 𝑢 𝑥 :  𝑥 > 𝑅1 ≤ min⁡{𝑢 𝑥 :  𝑥 ≤  𝑅0} 

where R0 is constant such that  𝑥 > 𝑅0  we have 
1

1+ 𝑥 log
1

|𝑥|

 ≥  𝐶𝜆 𝑥 . We shall prove the theorem in 

following three steps. 

Step-I: To prove [R1, ∞ )⊂ Λ. Let 𝜆 ∈  𝑅1, ∞ , so 

𝜆 ≥  𝑅1 . We note that 𝐵0
    ⊂   𝜆 . But 𝑉𝜆 > 0  in 𝐵0. Then 

by lemma 3.5 𝜆 𝜖 Λ. It implies that [R1, ∞ )⊂ Λ. 

Step-II: Let 𝜆0  ∈  Λ, then there exist 𝜖 > 0 such that 
 𝜆0 −  𝜖 , 𝜆0  ⊂ Λ. Assume to the contrary that there exist 

an increasing  sequence {λi}, such that λ𝑖  →  𝜆0 as 𝑖 → ∞. 
By lemma 3.5 we have a sequence {xi}, i = 1,2,3,... such 

that 𝑥𝑖  ∈   𝜆𝑖
∩ 𝐵𝑅0

       and 𝑉𝜆𝑖
 𝑥𝑖 ≤ 0. A subsequence 

which we call again sequence {xi} converges to some 

point  𝑥0  ∈   𝜆𝑖
 ∩  𝐵𝑅0

 . Then 𝑉𝜆0
 𝑥0 ≤ 0. Since 

𝑉𝜆0
> 0 in  𝜆0

, we have 𝑥0  ∈  𝑇𝜆0
. By mean value 

theorem there exist a point yi satisfying  
𝜕𝑢

𝜕𝑥1
 𝑦𝑖  ≥ 𝑜  on 

the straight line segment joining 𝑥𝑖  to  𝑥𝑖 
𝜆𝑖   for each i = 

1,2,3,... . Since 𝑦𝑖  →  𝑥0 as  → ∞ , we have   
𝜕𝑢

𝜕𝑥1
 𝑥0   ≥

0 .  On the other hand, since 𝑥0  ∈  𝑇𝜆0
, we have 

𝜕𝑢

𝜕𝑥1
 𝑥0 < 0 . This is a contradiction, hence step II is 

proved. 

Step-III: We have to prove either statement (A) or 

statement (B) holds. 

(A) 𝑢 𝑥 =  𝑢(𝑥𝜆) for some 𝜆1 > 0 and 
𝜕𝑢

𝜕𝑥1
 < 0 on 

𝑇𝜆 for some 𝜆 >  𝜆1. 

(B) 𝑢 𝑥 =  𝑢(𝑥0) in 𝜎0 and 
𝜕𝑢

𝜕𝑥1
 < 0 on 𝑇𝜆 for some 

𝜆 >  0. 

Let 𝜆1 = inf{𝜆 > 0 ∶  𝜆 , ∞ ⊂  Λ}. We distinguish the 

proof in two cases: (i) 𝜆1 > 0 and (ii)  𝜆1 = 0. 

Case (i): Let λ1 > 0.   

 Let Vλ1 (x) = u(x) – u(x
λ1

) . Since u is continuous we 

have Vλ1 (x) ≥ 0 in Ʃλ1. From lemma 3.4 we have  

∆Vλ1
 x + Cλ1

 x Vλ1
 x ≤ 0  in  Σλ1

. 

Hence by strong maximum principle we have that either  

Vλ1
> 0 in Σλ1

 or Vλ1
= 0 in Σλ1

 . 

Assume that  Vλ1
> 0  in Σλ1

 then 𝜆1  ∈  Λ .  From 𝑠𝑡𝑒𝑝 

(II) there exist 𝜖 > 0  such  that  

 𝜆1 −  𝜖 , 𝜆   ⊂  Λ. This contradicts to the |definition of 

𝜆1 . So  Vλ1
 x = 0 . Since     ( 𝜆1, ∞ )  ⊂ Λ  we have 

𝜕 𝑢

𝜕𝑥1
< 0  on 𝑇 𝜆  for λ > λ1 . (By lemma 3.6) .Thus we get 

statement (A). 

Case(ii): Let  λ1 = 0. 

 From continuity of u. Vλ0(x)≥ 0 in Ʃ0. By lemma 3.6 we 

have  
∂u

∂x1
< 0     𝑜𝑛  Tλ  for λ > 0. Assume that V(r) is not 

constant, in this case we have to prove that (A) holds. 

From (1.1) we have V(|x|) = V(|x
λ
 |) for 𝑥 ∈  Σ𝜆 . 

Since V(r) is nonincreasing, we have w is 

constant. This contradicts to the assumption. Thus (B) 

holds. If (B) occurs in step (III) then we can repeat all the 

three steps for negative X1 –direction about plane x1= λ1 < 

0  or 

 u(x) ≤  u(x0)  in Ʃ0.                          (3.11) 

If (3.11) occurs then u(x) = u(x
0
) in Ʃ0. Therefore 

u must be radially symmetric in X1 –direcion about some 

plane and strictly decreasing away from the plane. Since 

equation (1.1) is invariant under rotation we may take any 

direction as X1 –direction and conclude that u is 

symmetric in every direction about some plane. 

Therefore, u is radially symmetric about origin and ur < 0 

for r > 0.   

We give some corollaries of the theorem. First 

we consider the case where V (r) is nonpositive for r large. 

In this case we take 𝛼 > 3 in (3.9) and can obtain the 

following. 

Corollary-1: Suppose that V(r) is nonpositive for large R. 

Let u be the solution of (1.1) satisfying   u
+
 ∈ 𝐿∞   𝑅3 . 

Then u must be radially symmetric about the origin and ur 

< 0 for r > 0. 

Next we consider the case where the V(r) is nonnegative 

for  r ≥ 0.  

Corollary-2: Suppose V(r) is nonnegative for r ≥ 0 and 

satisfies  𝑟𝛼  𝑉 𝑟 < ∞ 𝑟 →∞
lim ⁡𝑠𝑢𝑝

, with 𝛼 > 3. Let u be the 

solution of (1.1) satisfying   u
+
 ∈ 𝐿∞   𝑅3 . Then u must be 

radially symmetric about the origin and ur < 0 for r > 0. 

Corollary-3: Suppose V(r) is nonnegative for r ≥ 0  Let u 

be the solution of (1.1) satisfying      ∫ 𝑒𝑢  𝑑𝑥 <  ∞
𝑅3                                                

(3.12) 

Then u must be radially symmetric and decreasing. 

Corollary-4: Suppose V(r) is nonnegative for r ≥ 0  Let u 

be the solution of (1.1) satisfying         
𝑢(𝑥)

log ⁡|𝑥|
→  − 𝛽 as  |x| 

→ ∞ with 𝛽 > 3.             (3.13) 
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Then u must be radially symmetric and decreasing. 

Here we see that u satisfies (3.12). As a consequence of 

corollary [ 3] we obtain corollary [4]. 
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