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Abstract:- The aim of our present work is to develop a model 

for capillary tissue fluid exchange system and to investigate 

the effect of permeability of the tissue and the parameters 

related to the casson’s fluid model for the blood on the fluid 

filtration and capillary and tissue pressure. The model 

consists of single capillary surrounded by porous tissue. The 

blood in capillary is modeled by casson’s fluid with 

peripheral layer. The governing equations in the tissue as 

well as in capillary region are solved using analytical method 

and computational results have been obtained. It has been 

observed that filtration decreases as the viscosity of the 

peripheral layer increases.   

 

I. INTRODUCTION 

 

ll the fluid outside the cells are collectively called the 

extracellular fluid. The two largest compartments of 

the extracellular fluid are interstitial fluid which makes up 

about three fourths of the extracellular fluid and the 

plasma, which makes up almost one fourth of the 

extracellular fluid. The plasma is the noncellular part of 

the blood and communicated continuously with the 

interstitial fluid through the pores of the capillary 

membrane. These pores are highly permeable to almost all 

solutes in the extracellular fluid except the proteins. 

Therefore the extracellular fluids are constantly mixing, 

so that the plasma and the interstitial fluids have about the 

same composition except for proteins which have a higher 

concentration in the plasma. 

Edema refers to the presence of excess fluid in 

the body tissue. In most instances edema occurs mainly in 

the extracellular fluid compartment, but can involve 

intracellular fluids as well. Extracellular fluid edema 

occurs when there is excess fluid accumulation in the 

extracellular spaces. There are two general causes of 

extracellular edema (i) abnormal leakage of fluid from the 

plasma to the interstitial spaces across the capillaries and 

(ii) failure of the lymphatic to return fluid from the 

interstitium back into the blood. The most common 

clinical cause of interstitial fluid accumulation is 

excessive capillary fluid filtration. A large number of 

conditions can cause fluid accumulation in the interstitial 

space by abnormal leakage of fluid from the capillaries or 

by preventing from returning fluid from the interstitium 

back to the circulation.  

There are three major factors that cause increased 

capillary filtration of fluid and protein into the 

interstitium. i) increased capillary hydrostatic pressure (ii) 

decreased plasma colloid osmotic pressure and (iii) 

increased capillary permeability, which causes leakage of 

proteins and fluid through the pores of the capillaries.  

Therefore the studies of movement of body fluids 

across membrane and through tissue compartment are 

basic physiological problems. There are lot of challenging 

problems to be investigated. Mathematical analysis of 

these movements would be highly complex without the 

use of simplifying models and assumptions about the 

microcirculation. 

Starting from the first model of Krogh known as 

Krogh cylinder model of capillary tissue oxygen transport 

model. Through a series of research papers by research 

group led by Fitzgerald, Secomb and Skalak have 

separately developed the subject for closely filtered cells 

in capillaries through which cells enter in various 

deformed shapes and plasma squeezes through the small 

gaps between the cell and the capillary. Nappier and 

Shubert, Salathe et.al. and Secomb et.al. have separately 

developed models of oxygen transport through single 

capillary and whole tissue organs. Salathe and 

Venkatraman have discussed model of capillary tissue 

fluid exchange and role of extravascular protein on fluid 

exchange. They have also considered the interaction of 

fluid movement and particle diffusion across capillary 

walls. The rate of transcapillary exchange of substances 

delivered to or removal from the tissue by blood depends 

on concentration difference across the capillary wall. 

Salathe developed a model of capillary tissue fluid 

exchange. This model includes the mutual interaction of 

fluid movement across the capillary wall and convection 

and the diffusion of a number of solutes also developed a 

mathematical model of blood flow in a coronary capillary. 

In view of the non-Newtonian nature of blood in 

capillaries and filtration /absorption property of the wall, 

Oka (1979) studied blood flow in capillaries with 

permeable walls using the casson fluid model.  

 A survey of the literature on the topic indicates 

that barring a few who discussed the problem for filtration 

efficiency in the capillary tissue exchange system. As 
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discussed earlier that moment of fluids across tissue may 

affect the fluid properties and influence the flow patterns, 

particularly small diameter vessels. A study of filtration 

efficiency in the capillary tissue exchange system may be 

of significant practical use and clinical application. It 

appears that no effort at least to the author’s knowledge 

has been made to observe the filtration efficiency 

representing blood as three layer model. Motivated by 

above studies we have developed a mathematical model 

for capillary tissue fluid exchange system. A Krogh 

cylinder model has been taken to represents the capillary 

surrounded by tissue with peripheral layer. Blood is 

treated as two fluid model with the suspension of all the 

erythrocytes in the core region as a casson fluid and the 

plasma in the peripheral  region as a Newtonian fluid 

Tissue is represented by porous matrix which is governed 

by Darcy’s Law. Under admissible assumptions the 

governing equation in two regions has been solved by 

using proper boundary and interfacial conditions with the 

help of mathematical techniques. Filtration from a 

capillary into the surrounding tissue and flow in the 

capillary has been analyzed                

 

 

II. FORMULATION OF PROBLEM 

 

Figure1 shows the flow geometry corresponding to the 

cylindrical polar coordinate system, where r and x denote 

the radial and axial coordinates respectively. The problem 

has been investigated under the following assumptions: 

 

Assumptions: 

 

Whole blood is a complex mixture and a capillary is 

comparable in diameter to red cells. Therefore an attempt 

to analyse the system in formal manner is very difficult 

and then we have to use number of simplifications: i) The 

capillary tube between an arteriole and venule is a straight 

tube of a uniform circular cross section as in Fig.1.ii) The 

blood is non Newtonian fluid. iii) The motion of blood is 

laminar, slow  axisymmetric and steady iv) No body force 

acts on the blood.  

 
 

 

The whole region is divided into two regions 

1. Capillary Region 

2. Tissue Region 

 

1. Capillary Region: We have considered the 

axisymmetric flow of blood in a cylindrical capillary 

surrounded by tissue. In capillary it is assumed that blood 

is represented by a two layered model with a central layer 

of casson fluid of radius R1 and a peripheral layer of 

plasma of radius R2.  Core region is assumed to be uniform 

hematocrit of radius rh. 

 

Under the admissible assumptions the equation of motion 

and the continuity for peripheral layer, central region and 

core region is written as below:  

 

(i) For Peripheral layer region 
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(ii) For central region 
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Where 1  is stress in central region. 0  is constant yield 

stress in the core region. 
r

u1




 is the rate of strain of the 

casson fluid. 1 denotes casson’s viscosity. These 

relations corresponds to vanishing of velocity gradients in 

the region where the shear stress 1  is less than yield 

stress 0 . This implies plug flow, whenever 01      

 

Considering the forces on the control volume and 

equating the shear forces and pressure forces acting on the 

control volume, we get 
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Dividing by r  and taking the limit as 0r  , we get 

 

        
x

rr
dr

d




   

which on integration leads to  
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The constant A is determined by the condition that 1 is 

finite at 0r   

and we get  
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Where 
x


  is the pressure gradient of the flow in 

capillary. 

 

again putting hrr   ,     01    we get 
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2. Tissue Region: Governing equation in tissue region is 

given by Darcy’s law 
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where x   and r  are the axial and radial coordinates,   

and   are the pressure in capillary region and tissue 

region respectively. 


0u


0v ,


cu


cv , 


1u  


1v and 

u v are the axial and radial component of velocity in 

cell free layer, core region, central region and tissue 

region. K is the permeability of tissue. 0  1  c  and 

  are the viscosity of cell free layer, central region, core 

region and tissue region. 

 

III. BOUNDARY AND MATCHING CONDITIONS 
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Slip velocity is assumed at the porous boundary 
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The velocity is continuous at the interface of plasma and 

the core  
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No flux condition is assumed at the outer surface of tissue     
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Pressure across the boundary are assumed continuous 
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At the entry of the capillary the fluid pressure is equal to 

the pressure at the arterial end we assume the fluid 

pressure equal to the pressure at venous end 
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IV. NON- DIMENSIONAL SCHEME 
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where   is the fluid density, 
0bu  is the blood velocity 

and   is the slip parameter. 

 

 

V. SOLUTION OF THE PROBLEM 

 

Pressure in the tissue region, after solving Laplace 

equation, is given as 
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Pressure in capillary region is obtained using equation of 

continuity, and given as 
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Flow rate in the capillary region is calculated as             
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Introducing the velocities in the expression (12) we finally 

get the expression for flow rate as 
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The total volume of fluid transferred to the tissue per unit 

time is given by 
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The quantity of fluid goes into the pores of the tissue is 

 

   

2/

0

202v dxHR,xvR2Q



                            (15)                                                                               

  
2

n
SinYE

K
R2Q n

1n

nn2v





 




                    (16)                                                                           

 

The ratio between vQ  and the total flow rate vQ  is 

characterized by filtration efficiency which is very 

important parameter of the system 
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VI. RESULTS AND DISCUSSION 

 

Results of the above analysis are presented through 

figures 2 to 11. 

 

 
 

 

 

 
 

Figures 2 and 3 shows the variation of capillary pressure 

with axial distance for different values of core thickness 

and casson viscosity respectively. Results of our model 

are similar to physiological fact. The pressure in the 

capillary region decreases towards the venous end which 

is clear from the graph of figure 2 and 3. The capillary 

pressure is also seem to depend on core radius of casson 

fluid model and peripheral layer viscosity. We may 

conclude from our observations that due to some disease 

if red cell starts depositing towards the axis of the 

capillary the pressure increases in the capillary region. 

Similar in diseased state when the viscosity of the base 

fluid i.e. plasma increase pressure in capillary region also 

rises.     

 

 
 

 

 
 

 

Fig. 4& 5 shows the variation of tissue pressure with 

radial distance for different values of core thickness and 

casson viscosity respectively. Tissue pressure decreases 

with radial distance i.e. towards as it moves for away from 

the capillary tissue interface. As core thickness increases 

tissue pressure decreases. Increase of core thickness 

represents the increased concentration of cells on the axis 

of the capillary. Tissue pressure increases as viscosity of 

cason fluid increases. Graphs also shown that pressure 

also decrease towards the venous end in tissue region.   
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Figure 6 and 7 show the variation of normal component of 

velocity at the interface for different values of  

permeability and peripheral layer viscosity. As fluid tends 

to the venous end the normal velocity falls. This is due to 

the frictional resistance of the capillary and  the increased 

crossectional area. This depends on fact that the arterial 

pressure is higher than the venous pressure. Normal 

component of velocity increases as permeability increase 

and as viscosity of peripheral layer decreases the fluid 

becomes thin and normal velocity increases than fluid 

easily enters into the tissue.   

 

 

 Figure 8 Variation of Filtration Efficiency with axial distance for 

different values of Permeability 

 

 

Figure 9 Variation of Filtration Efficiency with axial distance for 
different values of Peripheral layer viscosity 

 

Figures 8 and 9 depict that the variation in filtration 

efficiency with respect to the axial distance for different 

values of permeability and peripheral layer viscosity. As 

axial distance increase first the filtration efficiency 

decrease then it increase slightly. This is due to the fact 

that fluids flow out of a capillary at the upstream end near 

an arteriole and reenter a capillary downstream near a 

venule. As permeability increases, filtration efficiency of 

fluid increases and more fluid enters into the tissue. As 

viscosity of peripheral layer increases the fluid becomes 

more thick which results that the less filtration of fluid to 

the tissue.  
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