
Volume IV, Issue X, October 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 78

A Comprehensive Review of Refactoring Techniques
1
Sukhdeep Kaur

,

2
Dr. Raman Maini

 Department of Computer Engineering,

Punjabi University, Patiala, India

Abstract: Refactoring is a crucial process to improve the

quality of software. Refactoring is part of software engineering

that improves more readability of program and

maintainability of the software. Refactoring is a most widely

used technique that gives the code simpler, cleaner, reusable,

extendable, maintainable or other characteristics by

transforming a program. In programming languages, bad

smell or code smell is a code or design problem that makes the

software hard to understand and maintain the code. Basically,

bad smells are structured characteristics of software that

indicate a problem, may be need it refactoring of code. In this

paper some refactoring techniques discussed that are used to

remove code smells from code or program. Simulation has

been done for some refactoring techniques like Rename

method, Extract method, Move method, Pull up method using

Eclipse tool. Eclipse refactoring tool supports the java

development language. It has been observed that pull up

method is better as compared to other refactoring methods

because pull up method dispose the complexity and duplicate

code from program.

Keywords: Software Refactoring, Bad Smell, Refactoring Tool,

Refactoring technique, Result using Eclipse.

I. INTRODUCTION

efactoring is a disciplined technique used for

restructuring an existing code of program and altering

its internal structure without changing its external behavior,

in case of complexity in the program. According to Martin

Fowler “Using refactoring, observable behavior is not

changed if it alter the internal structure of software for

easier to understand and cheaper to modify the code” [1].

When refactoring is used to modify the software, it

improves readability, maintainability, and extensibility of

the code. Refactoring is an important part of software

development cycle and refactoring tools are also critical to

make refactoring fast and behavior preserving. Basically,

refactoring is a process to change a software system in such

a way that remains the same result, only improves the

internal code. For various software applications, refactoring

techniques are applied to artifacts like Models, Unified

Modeling Language (UML), Databases, HTML (source

code) documents. In programming language, it provided

advantages like easy to understand, reduce duplicate code

and inconsistent code. The goal of refactoring is to make

code easier to maintain and reusable in the future [2].

Refactoring techniques are required for adding new

features, fix a bug/bad smells and for greater understanding.

There are various steps used to refactor the code [3].

1. Apply unit test to program code.

2. Find some code that have “smell” in program.

3. Determine how to simplify these code smells.

4. Select and apply refactoring technique for removing the

code smell.

5. Repeat the simplify/test cycle until the smell is gone from

code.

II. BAD SMELL

If it stinks, change it. Pieces of code that is wrong in some

sense and ugly to see [4]. Bad smells in other words, it is a

code or design problem that occurs when structural

characteristics of software are defined but it does not

produces any error at the execution time. This problem

makes the software hard to maintain the code and may be it

require active the refactoring of code to remove the bad

smells. [5].

2.1. Bad Smells in Code: The bad smells in the code are

defined as follows [6]-[7].

2.1.1. Duplicate Code

When same code elements exist in multiple places rather

than one place, it is a duplicate code.

Duplicate code become badly because if you modify one

instance of duplicated code but not the others, you may have

introduced a bug. E.g. Having the same expression in two

sibling subclasses.

2.1.2. Long Method

Many statements, loops, variables in a one method is a long

method. Long Method is too long, so it provides difficulty

to understand the code. E.g. Over 20 lines of method are

usually a bad sign. Fewer than 10 lines of method are

typically good.

2.1.3. Large Class

A class that is trying to do too much function is a large

class. Large class reduce the cohesion from code because it

has many instance variables or methods. E.g. More than

seven or eight variables indicate a bad sign.

2.1.4. Feature Envy

A method that is define in one class but it is more interested

in the attribute of other class where it is presently located

and focus of the envy in feature envy is the data. Method in

one class seems happier in other class. E.g. Finding a (part

of a) method that makes heavy use of data and methods

from another class.

2.1.5. Long Parameter List

R

Volume IV, Issue X, October 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 79

Many parameters passed into one method. It is hard to

understand and become with inconsistent code. E.g. public

void marry (String name1, Int age1, Boolean gender1,

String name2, Int age2, Boolean gender2){ ……. }

2.1.7. Data Class

If getter/setter methods, variables and properties for fields

in only one class then it is a data class.

III. TOOLS

Refactoring support various tools like

3.1. Smalltalk Refactoring Browser

The first widely used refactoring tool was Smalltalk

refactoring browser that used for implementing most of the

standard classes, methods and fields refactoring for the

Smalltalk language [8]. Smalltalk is a very neat and clean

language which has more automatic processing than other

languages such as C++.

3.2. Eclipse

Eclipse tool provided by IBM that is an open source

development environment and it creates a ’universal tool

platform’. At the core, it is a language-independent

development area which offers some refactoring features

like Rename variable, parameter, Move method, Extract

method, Pull up Method, Extract class etc. Eclipse tool is

interesting because it aims to be a general development

environment, rather than focusing on Java [8].

3.3. Idea

Idea is a commercial development environment created by

IntelliJ. JetBrains creates the IntelliJ, Idea is a integrated

development environment in java. Idea has the refactoring

features like Rename Method for package, class, field,

method parameter and local variable, Extract Method,

Introduce Variable. Idea does not implement many

refactoring techniques, for this reason it could not be

described as a refactoring browser.

IV. SIMULATION

Using eclipse tool provide simulation for some refactoring

techniques. Eclipse tool has most powerful group of

refactoring techniques to enhance the productivity of

software [8]. Eclipse tool defined with some source code

examples in java language for what is the purpose and use

of each refactoring technique.

In eclipse tool, refactoring can be grouped into three parts

[9]:

a) Change the name and internal structure of code that

include rename elements, classes, variables, interfaces and

move methods and classes e.g. rename method.

b) Change the internal code within a class code that include

fragment of a code into a new separate method from

selected code in a method and getter/setter methods are

generated for fields e.g. extract class, extract method.

c) Change the internal code at the class level that include

push down the methods or fields from a super class to a

subclass, pull up the methods or fields from subclass to a

super class and move method from one class to another

class e.g. pull up method, push down method, move

method.

Simulations for some refactoring methods are defined as

follows:

1. Rename Method: This is simple refactoring used to

rename a methods, method parameters, fields, local

variables, compilation units, packages, source folders,

projects, etc.

If the name of any elements in a code like variable name

does not reveal out its purpose why to use then change the

name of its variable.

In the figure1 (a) the name of class is pp before refactoring.

Class pp name have does not sense for understanding what

work is done by that class.

Figure 1(a) code before rename refactoring

So change the name of class pp using rename refactoring

method shown in figure1 (b). For this select

Refactor>Rename option and type the name of class

simpletest and click on Finish.

Volume IV, Issue X, October 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 80

Figure 1(b) select option and change the name of class

After select the refactor option, type the name of class is

simpltest and result show in figure1 (c).

Figure1(c) code after rename refactoring

2. Extract Method: Extract Method is typically used when a

method is too long. It contains fragment of long method into

a new separate method that defined the purpose of the

method what for using. Extract method create a new method

from currently selected statements or expression in code and

replaces this selection with a reference to the new method.

Extracting the relevant code out into its own method allows

it to be called elsewhere, and makes the original method

easier to read and understand. In Figure2 (a) print the marks

of class student. For effective way to understand the code,

apply extract method.

Figure 2(a) code before extract refactoring

Select Refactor>Extract Method option and type the name

of method printmarks and select access modifier. In figure

2(b) public access modifier is selected and click on Ok.

Figure 2(b) select option and type name of method

After refactoring result show in figure2 (c) . It creates new

method printmarks that defined the better understanding to

read the code as compare to before refactoring the code.

Volume IV, Issue X, October 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 81

Figure 2(c) code after extract refactoring

3. Move Method: If a method define in one class but it is

more used by another class where it is currently located,

then move that method to the another class [10]. In the

figure3 (a) driver class have method warehouse that method

is mostly used by driver1 class. So move this method to

driver1 class.

Figure 3(a) code before move refactoring

For moving select Refactor>Move option and type the name

of class destination where to move the method, show in the

figure3 (b)

Figure 3(b) select option and type name of destination

See the code that is moved from class driver to driver1 in

figure3(c).

Figure 3(c) code after move refactoring

4. Pull up Method: The Pull up Method is the process of

taking a method and “Pulling” it up in the inheritance chain

procedure. This is used when a method needs to be used by

multiple implementers.

Figure 4(a) code before pull up refactoring

In the figure4 (a) animal is an abstract baseclass, classcarni

and harbi derived from it. Both of these classes have same

value of variables declare that means duplicate code is

available.

For this pull up variables to super class. For this select

Refactor >Pull up option and select the members to move

for abstract animal baseclass that remove duplicate code

shown in the figure4 (b).

Volume IV, Issue X, October 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 82

Figure 4(b) select option and members for pull up

The result of code after refactoring in figure 4(c).

Figure4 (c) code after pull up refactoring

V. RESULTS AND DISCUSSION

Various software refactoring techniques are available that

are used to dispose the bad smells. These techniques are

implemented using Eclipse tool which support the java

language. First, Rename refactoring

technique is implemented. Figure1 shows the code before

refactoring that does not explain the purpose why to use this

class. This code needs to refactor for better understanding

and easy to use. The result of rename technique is good as

compared to before refactoring. Second, Extract refactoring

technique is implemented. Figure2 shows the code before

refactoring that does not explain the purpose why to use this

code. For effective understanding, extract technique makes

new method that gives the meaning.

The result of extract technique reduces the complicated

code to simple code but extract code require more space and

time for execution. Third, Move technique is implemented.

Figure3 shows the code before refactoring that have heavy

amount of code but this code mostly used by other class

from where it is currently located. This code is move to that

class which is more interested. The result of move

refactoring technique makes the code more flexible. Fourth,

Pull up technique is implemented. Figure4 shows the code

before refactoring that use same field in two places. Pull up

technique refactor the code from subclasses to superclass.

The Pull up technique reduces the duplicate code from

program and makes it consistent.

VI. COMPARISON BETWEEN SOME REFACTORING TECHNIQUES

Refactoring Techniques

Description Use for bad smells

Rename Method This is simple and most effective refactoring to

rename a property / attribute, method or object and

rename identifiers used to reduce the need of

comments from a code. Rename method gives more

clarity to understand the code.

Shortcut: Alt+Shift+R

 Code Comments

Extract Method Extract Method is typically used when a method is

too long and used to clean up lengthy, cluttered,

complicated code and it also require more space and

time.

Shortcut: Alt+Shift+M

Long method

Move Method One class method use another class more than where

it is currently located, move to that class. This

method used to move static fields, static methods and

other elements from one class to another.

Shortcut: Alt+Shift+V

Feature Envy

Pull up Method If two subclasses have the same field then move it to

super class. This method used to moves a field or

method to super class where it declare as abstract in

super class.

Duplicated code

Volume IV, Issue X, October 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 83

VII. CONCLUSION

Refactoring is an important part of software development

cycle and refactoring tools are faster and used to reduce the

bug occurrence from the code. In this paper various code

smells are defined that are removed by refactoring

techniques. These refactoring techniques are implement

using refactoring tool that is Eclipse tool and it provide

advantages like easy to understand the code, reduce

duplicate and inconsistent code. Comparison of refactoring

techniques observed that pull up method is better as

compared to extract methods because pull up method

dispose the complexity and duplicate code from program.

REFERENCES

[1]. M. Fowler, K. Beck “Refactoring: Improving the Design of Existing

Code” Addison Wesley, 2002

[2]. Alejandra Garrido, Gustavo Rossi, Damiano Distante “Refactoring

for usability in web applications” IEEE Software Vol.28, No. 3,
2011.

[3]. Mesfin Abebe, Cheol-Jung Yoo ” Trends, Opportunities and

Challenges of Software Refactoring: A Systematic Literature Review”
International Journal of Software Engineering and Its Applications

Vol.8, No.6, pp.299-318, 2014.

[4]. T. Mens, T. Tourwe. “A Survey of Software Refactoring,” IEEE
Transactions on Software Engineering, Vol. 30, No.2, 2004.

[5]. J. Fields, S. Harvie, M.Fowler, K. Beck; “Refactoring in Ruby”,

Addison Wesley, 2009
[6]. Mr. Karnam Sreenu, Mr. D. B. Jagannadha Rao “Detection of Bad

Smells In Code for Refactoring Methods“ International Journal of

Modern Engineering Research(IJMER)Vol.2, No.5, pp-3727-3729,
2012.

[7]. Francesca Arcelli Fontana, Pietro Braione, Marco Zanoni “Automatic

detection of bad smells in code” In Journal of Object Technology,
vol. 11, no. 2, 2012, pp 1–38, 2012.

[8]. Piyush Chandi “A survey of code optimization using refactoring”

International Journal on Computer Science and Engineering
(IJCSE),Vol. 5 No.4, 2013

[9]. David Gallardo “Refactroing for everyone” How and Why use

Eclispe’s automated refactoring features, IBM.
[10]. http://www.integralist.co.uk/posts/refactoring-techniques.html.

