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Abstract: In current network system there is no centralized 

management model to monitor the collaboration between users 

and web application.The primary goal of proposed centralized 

model is to serve user requests by allowing the creation of 

cutting-edge, powerful, and complex processing that retain 

simple and easy-to-use interfaces and creating processes with 

dynamic codification, allocation, and bilateral execution 

andproviding a athenaeum to create processes to use 

combinations of CPUs and a GPU for tasks within a single host 

program process, a process can be created by using available 

GPUs. Each process can use all of the multiprocessors of each 

GPU and have its own separate namespace, and have its own 

separate CUDA context For C and CUDA kernels to process 

data efficiently using the available resources. 

 

I. INTRODUCTION 

 

n this digital world, more than 90% of desktop and 

notebook computers have integrated Graphics Processing 

Units i.e. GPU's, for better graphics processing. Graphics 

Processing Unit is not only for graphics applications, even for 

non-graphics applications too. In the past few years, the 

graphics programmable processor has evolved into an 

increasingly convincing computational resource. But GPU sits 

idle if graphics job queue is empty, which decreases the 

GPU's efficiency.Many applications with data-parallelism can 

map data elements to processing threads. For each data 

element we can only read from the input, execute some 

operations on it, and write to the output. It is possible to have 

multiple inputs and multiple outputs. Web servers and web 

browsers are communicating client-server computer programs 

for distributing documents and information, generally called 

web data,the web is becoming increasingly important for 

businesses and it’s the first place people go to when they are 

researching for information over the Internet. 
 

1.1 CPU  

The brain of the computer, processor, central processor or 

microprocessor, the CPU was first developed at Intel with the 

help of Ted Hoff in the early 1970’s and is short for Central 

processing Unit. The Computer CPU is responsible for 

handling all instructions it receives from hardware and 

software running on the computer. 

 
1.2 GPU  

General-Purpose computing on Graphics Processing Units 

(GPU) has recently emerged as a powerful computing 

paradigm because of the massive parallelism pro-vided by 

several hundreds of processing cores originally designed as 

special hardware for real-time and high-definition 3D 

graphics, GPUs have evolved into many-core processors to 

accelerate highly parallel computations. The GPU is designed 

such that more transistors are devoted to processing cores 

rather than the sophisticated control hardware, and therefore 

able to address problems that can be represented as data-

parallel computations. 

 

II. MOTIVATION 

Highlights 

 

► Hybrid computing allows full exploitation of the power 

(CPU+GPU) in a computer.  

► Proper orchestration of workload is managed by an on-

demand strategy.  

► Total number of threads running in the system should be 

limited to the number of CPUs. 

 

Hybrid systems with CPU and GPU are becoming the trend in 

system design. Although hybrid systems with CPU and GPU 

are widely used, programmers may not utilize them efficiently 

since it is challenging for the programmer to split and balance 

the workload between CPU and GPU. 

In current network system there is no centralized management 

model to monitor the collaboration between users and web 

application. Due to truancy of centralized management in the 

mainstream network system, misgivings faced are proper 

memory ration, data transfer, host best practices and 

Occupancy filling (maximal usage) of CPUs and GPUs. It can 

impact development to suffer privation to commit, before 

development even starts, to a GPU versus a CPU solution for 

each task step. 

I 
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Task allocation reflects some of the most important issues in 

clusters. The goal is to execute all the arriving tasks at 

minimum cost. This cost could be measured, for instance, in 

terms of the time needed to compute the tasks, the use of 

resources, the energy consumed, or any combination of them. 

 
III. ISSUES AND CHALLENGES 

 

As we seek to develop parallel applications, we must 

understand that such development presents at least three major 

challenges. I argue that all these challenges are equally 

present whether one programs a many-core GPU, an MIC, or 

a multi-core CPU. Unfortunately, there is little compiler 

technology that can help programmers to meet these 

challenges today. These challenges are the reasons why 

compiler-based solutions from vendors will have limited 

success in creating a scalable parallel code base for many 

applications. The focus is to clearly understand these 

challenges before we discuss key techniques that have been 

proven effective in practice. 

 

The most difficult challenge is that some important problems 

do not have massively parallel algorithms that exhibit desired 

behavior. To put this challenge into perspective, in order to 

achieve exa-FLOPS performance by the end of the decade, we 

will need to have billion-way parallelism assuming the current 

trends in clock frequency. At the chip level, developers who 

hope to enjoy continued performance growth in the next 

decade will need to use algorithms with at least ten-thousand-

way parallelism. Many “scalable” algorithms today fall short 

when measured with these standards. 

 

There are three levels of difficulties in the parallelism 

challenge. 

First, some problems do not have work-efficient parallel 

algorithms that exhibit massive parallelism. That is, we 

simply do not know how to solve these problems with a large 

number of parallel execution units without significantly 

increasing the computation complexity. 

Second, some problems have known parallel algorithms with 

ample parallelism but questionable numerical stability. Some 

of these parallel algorithms do not have the same level of 

numerical stability as well-known sequential algorithms. 

Third, some applications that have parallel algorithms are 

plagued by catastrophic load imbalance due to highly non-

uniform data distribution 

 

The second challenge arises in applications where parallel 

algorithms do not have sufficient data reuse to achieve good 

scalability in many core processors. 

 

The third challenge, and perhaps the least daunting one of the 

three, is that for parallel algorithms with high levels of 

parallelism and significant data locality, engineering the 

implementation of parallel algorithms to actually achieve 

good scalability is still challenging. 

Today, a parallel programmer needs to determine layout 

arrangements of data, allocate memory and temporary storage, 

arrange pointers, perform index calculation, and orchestrate 

data movement in order to make use of the on-chip memory 

resources to support data re-use. The programmer also has to 

decompose work into tasks, organize threads to perform the 

tasks, perform thread index calculations to access data in 

different levels of the memory hierarchy, determine data 

sharing patterns, and check data bounds. Many parameters of 

thesearrangements need to be determined for each hardware 

platform. 

The ability to meet these challenges often defines the haves 

and have-nots in parallel application development. Problems 

with good solutions to these challenges enjoy excellent 

scalability and efficiency. Others struggle. In the next several 

postings in this miniseries, I will discuss key techniques that 

have been proven effective in developing scalable parallel 

algorithms for challenging application. 

 

We propose a novel allocation strategy, resources aware 

scheduler (RAS) to solve these problems. 

This section presents the design of RAS and compares RAS 

results with the existing strategies we discussed in the 

previous section. 

IV. DESIGN OF RAS 

 

Fig. 1:  control flow between CPU and GPU 

Fig 1 shows the control flow between cpu and gpu .the 

complicated part of designing is how to I identify the type of 

request and resource allocation for the scheduler .we 

considered the concurrency level 25 as min so that the 

scheduler can schedule on gpu . the algorithm as follows  

Step 1:  if S>min goto step 2, goto step 5 

Step 2: calculate resource requirement 

Step 3:check for required resource are available if so goto step 

4,else goto step5   

Step 4: allocate req res on gpu and start lunching application 

Step 5:  if req res not available start processing  

On cpu 

 

V. IMPLEMENTATION 

 

We implement RAS in the form of an external library with 

CUDA and pthread as our proof-of concept system. The 
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library glues CPU code and GPU code together. We write 

separate code for CPU and GPU in our implementation. 

Asynchronous operations and extra threads can be used to 

handle the devices. Asynchronous operations are more 

complex than extra threads. So for the ease of programming, 

we first generate threads using pthread to handle all the 

devices we can use and assign devices to these threads. We 

initialize the devices before entering the accelerated region 

because it takes more time on initialization than computation 

on the GPU we use (Nvidia Tesla M2075) and this overhead 

makes allocation inaccurate. The allocation code is a critical 

section and only one thread can execute this code segment 

while other threads waiting for the allocation thread to finish 

its work. We use the main thread of the program as the 

allocation thread in our implementation. We schedule the task 

using the strategy described in Section 3 and the scheduler 

distributes the workload to each thread then threads can do 

their work. If a GPU-assigned thread receives a task which 

only needs partial data when doing partial computation, it will 

just transfer the needed data and the overhead of data 

movement is included in profiling. Otherwise, it will load all 

the data into GPU memory before the first step. We use this 

technique to reduce the data transfer time between GPU and 

CPU. After all work is done, threads synchronize at the exit 

point and exit. 

 

VI. EVALUATION 

 

This section evaluates our strategy. The evaluation 

environment is listed in Table 1. We use four stages, which to 

measure performance  

 

Table 1.Evaluation environment. 

 
Evaluation environment. 
 

Name                           Description 

 
CPU:                           Intel(R) Xeon(R) CPU E5 26200@ 2.00GHz 

GPU:                          Nvidia tesla M2075 @ 1.3 GHz 

CPU code compiler :  GCC 4.6.3 
GPU code compiler:   NVCC 6.5 

Operating system    :  CentOS 5.7 

 

We measure the load-balance of execution by calculating the 

difference in execution time with the following expression: 

  

 
Good performance of Allocation strategy comes from load-

balance. As Fig. 4 shows, the differences in no of requests 

served in certain time with different levels of concurrent and 

parallel processing. This means that the slower devices waits 

for 1=3 of the execution time in queue on CPU and the 

processing power of GPU is much fast compared to CPU.  

 

 
 

 
 

 
VII. CONCLUSION AND FUTURE WORK 

 

Heterogeneous systems with CPU and GPU are becoming 

popular. It is beneficial to use all the processors to solve a 

single task by taking advantages of data-parallelism. Existing 

data-parallelism allocation strategies do not take advantages 

of GPU’s performance characteristics. It either introduces too 

much overhead or is not accurate enough. 

We propose Allocation strategy, a novel allocation strategy to 

solve the problem by . Our evaluation result shows that 

compared with the existing strategies, can achieve up to 

42.7% performance improvement on average by accurately 

estimating the performance of GPU. 
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