
Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 90

Centralized Management with Dynamical Location of

Web Applications at Network Level Using Hybrid

Computing

Amaresh K S
1
, Naveen Kumar R

2
, Vinay S K

3
, Venkatesh P

4

1,3,4

 Assistant Professor, PESITM, Shivamogga

2
Net backup Engineer, Tech Aerosoft Pvt Ltd, Bengaluru

Abstract: In current network system there is no centralized

management model to monitor the collaboration between users

and web application.The primary goal of proposed centralized

model is to serve user requests by allowing the creation of

cutting-edge, powerful, and complex processing that retain

simple and easy-to-use interfaces and creating processes with

dynamic codification, allocation, and bilateral execution

andproviding a athenaeum to create processes to use

combinations of CPUs and a GPU for tasks within a single host

program process, a process can be created by using available

GPUs. Each process can use all of the multiprocessors of each

GPU and have its own separate namespace, and have its own

separate CUDA context For C and CUDA kernels to process

data efficiently using the available resources.

I. INTRODUCTION

n this digital world, more than 90% of desktop and

notebook computers have integrated Graphics Processing

Units i.e. GPU's, for better graphics processing. Graphics

Processing Unit is not only for graphics applications, even for

non-graphics applications too. In the past few years, the

graphics programmable processor has evolved into an

increasingly convincing computational resource. But GPU sits

idle if graphics job queue is empty, which decreases the

GPU's efficiency.Many applications with data-parallelism can

map data elements to processing threads. For each data

element we can only read from the input, execute some

operations on it, and write to the output. It is possible to have

multiple inputs and multiple outputs. Web servers and web

browsers are communicating client-server computer programs

for distributing documents and information, generally called

web data,the web is becoming increasingly important for

businesses and it’s the first place people go to when they are

researching for information over the Internet.

1.1 CPU

The brain of the computer, processor, central processor or

microprocessor, the CPU was first developed at Intel with the

help of Ted Hoff in the early 1970’s and is short for Central

processing Unit. The Computer CPU is responsible for

handling all instructions it receives from hardware and

software running on the computer.

1.2 GPU

General-Purpose computing on Graphics Processing Units

(GPU) has recently emerged as a powerful computing

paradigm because of the massive parallelism pro-vided by

several hundreds of processing cores originally designed as

special hardware for real-time and high-definition 3D

graphics, GPUs have evolved into many-core processors to

accelerate highly parallel computations. The GPU is designed

such that more transistors are devoted to processing cores

rather than the sophisticated control hardware, and therefore

able to address problems that can be represented as data-

parallel computations.

II. MOTIVATION

Highlights

► Hybrid computing allows full exploitation of the power

(CPU+GPU) in a computer.

► Proper orchestration of workload is managed by an on-

demand strategy.

► Total number of threads running in the system should be

limited to the number of CPUs.

Hybrid systems with CPU and GPU are becoming the trend in

system design. Although hybrid systems with CPU and GPU

are widely used, programmers may not utilize them efficiently

since it is challenging for the programmer to split and balance

the workload between CPU and GPU.

In current network system there is no centralized management

model to monitor the collaboration between users and web

application. Due to truancy of centralized management in the

mainstream network system, misgivings faced are proper

memory ration, data transfer, host best practices and

Occupancy filling (maximal usage) of CPUs and GPUs. It can

impact development to suffer privation to commit, before

development even starts, to a GPU versus a CPU solution for

each task step.

I

Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 91

Task allocation reflects some of the most important issues in

clusters. The goal is to execute all the arriving tasks at

minimum cost. This cost could be measured, for instance, in

terms of the time needed to compute the tasks, the use of

resources, the energy consumed, or any combination of them.

III. ISSUES AND CHALLENGES

As we seek to develop parallel applications, we must

understand that such development presents at least three major

challenges. I argue that all these challenges are equally

present whether one programs a many-core GPU, an MIC, or

a multi-core CPU. Unfortunately, there is little compiler

technology that can help programmers to meet these

challenges today. These challenges are the reasons why

compiler-based solutions from vendors will have limited

success in creating a scalable parallel code base for many

applications. The focus is to clearly understand these

challenges before we discuss key techniques that have been

proven effective in practice.

The most difficult challenge is that some important problems

do not have massively parallel algorithms that exhibit desired

behavior. To put this challenge into perspective, in order to

achieve exa-FLOPS performance by the end of the decade, we

will need to have billion-way parallelism assuming the current

trends in clock frequency. At the chip level, developers who

hope to enjoy continued performance growth in the next

decade will need to use algorithms with at least ten-thousand-

way parallelism. Many “scalable” algorithms today fall short

when measured with these standards.

There are three levels of difficulties in the parallelism

challenge.

First, some problems do not have work-efficient parallel

algorithms that exhibit massive parallelism. That is, we

simply do not know how to solve these problems with a large

number of parallel execution units without significantly

increasing the computation complexity.

Second, some problems have known parallel algorithms with

ample parallelism but questionable numerical stability. Some

of these parallel algorithms do not have the same level of

numerical stability as well-known sequential algorithms.

Third, some applications that have parallel algorithms are

plagued by catastrophic load imbalance due to highly non-

uniform data distribution

The second challenge arises in applications where parallel

algorithms do not have sufficient data reuse to achieve good

scalability in many core processors.

The third challenge, and perhaps the least daunting one of the

three, is that for parallel algorithms with high levels of

parallelism and significant data locality, engineering the

implementation of parallel algorithms to actually achieve

good scalability is still challenging.

Today, a parallel programmer needs to determine layout

arrangements of data, allocate memory and temporary storage,

arrange pointers, perform index calculation, and orchestrate

data movement in order to make use of the on-chip memory

resources to support data re-use. The programmer also has to

decompose work into tasks, organize threads to perform the

tasks, perform thread index calculations to access data in

different levels of the memory hierarchy, determine data

sharing patterns, and check data bounds. Many parameters of

thesearrangements need to be determined for each hardware

platform.

The ability to meet these challenges often defines the haves

and have-nots in parallel application development. Problems

with good solutions to these challenges enjoy excellent

scalability and efficiency. Others struggle. In the next several

postings in this miniseries, I will discuss key techniques that

have been proven effective in developing scalable parallel

algorithms for challenging application.

We propose a novel allocation strategy, resources aware

scheduler (RAS) to solve these problems.

This section presents the design of RAS and compares RAS

results with the existing strategies we discussed in the

previous section.

IV. DESIGN OF RAS

Fig. 1: control flow between CPU and GPU

Fig 1 shows the control flow between cpu and gpu .the

complicated part of designing is how to I identify the type of

request and resource allocation for the scheduler .we

considered the concurrency level 25 as min so that the

scheduler can schedule on gpu . the algorithm as follows

Step 1: if S>min goto step 2, goto step 5

Step 2: calculate resource requirement

Step 3:check for required resource are available if so goto step

4,else goto step5

Step 4: allocate req res on gpu and start lunching application

Step 5: if req res not available start processing

On cpu

V. IMPLEMENTATION

We implement RAS in the form of an external library with

CUDA and pthread as our proof-of concept system. The

Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 92

library glues CPU code and GPU code together. We write

separate code for CPU and GPU in our implementation.

Asynchronous operations and extra threads can be used to

handle the devices. Asynchronous operations are more

complex than extra threads. So for the ease of programming,

we first generate threads using pthread to handle all the

devices we can use and assign devices to these threads. We

initialize the devices before entering the accelerated region

because it takes more time on initialization than computation

on the GPU we use (Nvidia Tesla M2075) and this overhead

makes allocation inaccurate. The allocation code is a critical

section and only one thread can execute this code segment

while other threads waiting for the allocation thread to finish

its work. We use the main thread of the program as the

allocation thread in our implementation. We schedule the task

using the strategy described in Section 3 and the scheduler

distributes the workload to each thread then threads can do

their work. If a GPU-assigned thread receives a task which

only needs partial data when doing partial computation, it will

just transfer the needed data and the overhead of data

movement is included in profiling. Otherwise, it will load all

the data into GPU memory before the first step. We use this

technique to reduce the data transfer time between GPU and

CPU. After all work is done, threads synchronize at the exit

point and exit.

VI. EVALUATION

This section evaluates our strategy. The evaluation

environment is listed in Table 1. We use four stages, which to

measure performance

Table 1.Evaluation environment.

Evaluation environment.

Name Description

CPU: Intel(R) Xeon(R) CPU E5 26200@ 2.00GHz

GPU: Nvidia tesla M2075 @ 1.3 GHz

CPU code compiler : GCC 4.6.3
GPU code compiler: NVCC 6.5

Operating system : CentOS 5.7

We measure the load-balance of execution by calculating the

difference in execution time with the following expression:

Good performance of Allocation strategy comes from load-

balance. As Fig. 4 shows, the differences in no of requests

served in certain time with different levels of concurrent and

parallel processing. This means that the slower devices waits

for 1=3 of the execution time in queue on CPU and the

processing power of GPU is much fast compared to CPU.

VII. CONCLUSION AND FUTURE WORK

Heterogeneous systems with CPU and GPU are becoming

popular. It is beneficial to use all the processors to solve a

single task by taking advantages of data-parallelism. Existing

data-parallelism allocation strategies do not take advantages

of GPU’s performance characteristics. It either introduces too

much overhead or is not accurate enough.

We propose Allocation strategy, a novel allocation strategy to

solve the problem by . Our evaluation result shows that

compared with the existing strategies, can achieve up to

42.7% performance improvement on average by accurately

estimating the performance of GPU.

REFERENCES

[1]. V.W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A.D.

Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P.

Hammarlund, R. Singhal, P. Dubey, Debunking the 100x GPU vs.
CPU myth: an evaluation of throughput computing on CPU and

GPU, in: Proceedings of the 37th Annual InternationalSymposium

on Computer Architecture, ISCA ’10, ACM, New York, NY,
USA, 2010, pp. 451–460.

[2]. C. Nvidia, CUDA C programming guide 5.0, 2012.

[3]. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.
Houston, P. Hanrahan, Brook for GPUs: stream computing on

graphics hardware, in: ACMSIGGRAPH 2004 Papers,
SIGGRAPH ’04, ACM, New York, NY, USA, 2004, pp. 777–786,

[4]. A. Munshi, TheOpenCL specification version: 1.2, 2011.

[5]. T. Scogland, B. Rountree, W. chunFeng, B. de Supinski,
Heterogeneous task scheduling for Accelerated OpenMP, in: 2012

IEEE 26th InternationalParallel Distributed Processing

Symposium (IPDPS), 2012, pp. 144–155.
[6]. S. Hong, H. Kim, An integrated GPU power and performance

model, in: Proceedings of the 37th Annual International

Symposium on Computer

[7]. Architecture, ISCA ’10, ACM, New York, NY, USA, 2010, pp.
280–289,

