
Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 99

An Interesting Algorithm to Solve Vertex Cover

Problem

D. Abhyankar, P. Saxena

 School of Computer Science, D.A. University, Indore, M.P, India

Abstract: - Vertex cover problem has been proved NP complete.

Although a lot of research work has been carried out to invent

approximation algorithms, exact algorithms to solve the

problems remain unexplored to a large extent. We have found an

algorithm that performs more efficiently than brute force search

or simple backtracking algorithm. Our algorithm does not claim

polynomial running time; however it solves the problem more

efficiently than brute force search or simple backtracking

algorithm.

I. INTRODUCTION

 vertex cover or node cover of an input graph is the set of

nodes such that each edge of the graph is covered by at

least one vertex in the set. To find a minimum or optimum

size cover is a classic problem of graph theory. To find

optimum size vertex cover is a key problem in computational

complexity theory. It is fixed parameter tractable [5].

Solutions to vertex cover problem can be applied in

computational biochemistry and related areas. In

biochemistry, sometimes we need to solve conflicts between

sequences in a sample by ruling out some of the sequences. A

conflict is strictly defined in the context of biochemistry. In a

conflict graph the nodes or vertices epitomize the sequences in

the sample. There is an edge between two vertices iff there is

a conflict between the corresponding sequences. The aim is to

remove the fewest possible vertices (sequences) that will

resolve all conflicts. Recall that a vertex cover or node cover

of an input graph is the set of nodes such that each edge of the

graph is covered by at least one vertex in the set. Thus, the

aim is to find a minimum vertex cover in the conflict graph G

[6].

Vertex cover problem fascinates a lot of computer

science researchers. In 1972, Researcher Karp proved this

problem to be NP complete which means a polynomial time

worst case solution to this problem is unlikely [1]. One way to

tackle the problem is to look for approximation algorithms to

solve this problem. For instance two-approximation algorithm

solves the problem efficiently and elegantly. Also, literature

describes some other important approximation algorithms.

Another way is to solve the problem efficiently for special

cases.

Although a lot of research work has been carried out

in the area of approximation algorithms to solve vertex cover

problem approximately, little efforts were made to find exact

algorithms which are more efficient than brute force

algorithms. Our study fills this gap and finds for exact

algorithm which can perform more efficiently than brute force

algorithm to solve vertex cover problem.

II. IDEAS BEHIND PROPOSED ALGORITHM

First idea of the algorithm is to leave single degree

vertex. If we pick single degree vertex, we may end up in a

cover with redundant vertex. A redundant vertex in a set S is

one whose all neighbours are also present in set S. Covers

with redundant vertex are sub optimal; therefore we should

not compute covers with one or more redundant vertices.

Second idea of the algorithm is to compute close

estimate of a graph. This close estimate helps the algorithm to

achieve efficient backtracking. To have a close estimate we

choose an edge and decide to have both ends in the estimate

solution. Since at least one end must be picked by optimal

solution, estimate <= 1+optimal. Since at least one end of

the edge must be in the optimal solution, our recursion depth

will not be deeper than twice of optimal depth.

III. PROPOSED ALGORITHM

We propose an algorithm that solves vertex cover

problem more efficiently than brute force algorithms. Our

algorithm involves three key ideas discussed in earlier

Section. C++ code provided in the appendix implements the

algorithm. Pseudocode of the algorithm has been presented

below:

Function Exact(Graph G, int Lim) : int

Step 1: If Lim < 0 return N // Return value N indicates

failure

Step 2: If there is a single degree vertex u, leave u. G0 = G –

u – Neighbour(u)

Step 3: return Exact(G0, Lim-1)

A

Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 100

Step 4: if Graph is edgeless return 0;

Step 5: Choose an edge (end1, end2). Choose both ends of

the edge. G1 = G – end1 – end2.

Step 6: t = Exact(G1,Lim-1)

Step 7: If (t==N) return N // Backtracking

Step 8: CloseEstimate = t + 2

// Estimate provided by CloseEstimate can not be greater than

1+ExactAnswer, because at // least one end must be picked by

exact solution.

Step 9: If (CloseEstimate < Lim) Lim = CloseEstimate

Step 10: Leave end1. G2 = G – end1 – Neighbours(end1)

Step 12: t = Exact(G2,Lim- NeighbourCount(end1))

Step 13: if (t !=N) return (t + NeighbourCount(end1))

Step 14: Leave end2. G3 = G – end2 – Neighbours(end2)

Step 15: t = Exact(G3,Lim- NeighbourCount(end2))

Step 16: if (t !=N) return (t + NeighbourCount(end2))

Step 17: Result = Min(CloseEstimate,LeaveEnd1,LeaveEnd2)

Step 18: return Result

IV. INFORMAL DESCRIPTION OF ALGORITHM

 Function Exact computes the cardinality or size of

minimum size vertex cover. Algorithm applies the ideas

discussed in Section 3. CloseEstimate, LeaveEnd1 and

LeaveEnd2 are key variables that store the intermediate results

of the choices made by the algorithm. Variable Result stores

the minimum of these key variables and forms the final

answer which is returned by the algorithm in the last step.

V. CONCLUSION

A lot of work has been carried out in the field of

approximation algorithms, but field of exact algorithms has

been unexplored. To solve vertex cover problem, we can

design much better than brute force algorithm or simple

backtracking algorithm. Proposed algorithm combines three

intuitive ideas and offers a better exact algorithm. Proposed

algorithm does not claim polynomial running time, yet it

solves the problem more efficiently than brute force search or

simple backtracking algorithm.

REFERENCES

[1]. R.M. Karp, Reducibility among combinatorial problems,
Complexity of Computer Computations, Plenum Press, 1972.

[2]. Stanley Lippman, Essential C++, Addison-Wesley, 2000.

[3]. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald
L. (1990). Introduction to Algorithms (first ed.). MIT Press and

McGraw-Hill. ISBN 978-0-262-03141-7.

[4]. http://www.dharwadker.org/vertex_cover/,2015
[5]. https://en.wikipedia.org/wiki/Vertex_cover,2015

[6]. http://www.dharwadker.org/pirzada/applications/2015

APPENDIX

using namespace std;

const int N = 7;

struct Vertex{

 int neighbourCount;

 int* Adjacent;

};

class Graph{

 private:

 int vertexCount;

 Vertex a[N];

 public:

 Graph(){

 vertexCount = N;

 int j = 0;

 while(j <N){

 cout << "Enter neighbour count of vertex " << j <<

endl;

 int count;

 cin >> count;

 a[j].neighbourCount = count;

 a[j].Adjacent = new int[count];

 int k = 0;

 while(k <count){

 cout << "Enter next neighbour-id" << endl;

 cin >> a[j].Adjacent[k];

 k++;

 }

 j++;

 }

 }

 int NebCount(int id) const{

 return a[id].neighbourCount;

 }

https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ronald_L._Rivest
https://en.wikipedia.org/wiki/Ronald_L._Rivest
https://en.wikipedia.org/wiki/Ronald_L._Rivest
https://en.wikipedia.org/wiki/Introduction_to_Algorithms
https://en.wikipedia.org/wiki/MIT_Press
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-03141-7
http://www.dharwadker.org/vertex_cover/,2015
https://en.wikipedia.org/wiki/Vertex_cover,2015

Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 101

 int NodeCount() const{

 return vertexCount;

 }

 Graph(const Graph& ob){

 vertexCount = ob.vertexCount;

 int j = 0;

 while(j<N){

 a[j].neighbourCount = ob.a[j].neighbourCount;

 int count = a[j].neighbourCount;

 a[j].Adjacent = new int[count];

 int k = 0;

 while(k < count){

 a[j].Adjacent[k] = ob.a[j].Adjacent[k];

 k++;

 }

 j++;

 }

 }

 int LeastDegreeVertex() const{

 int count = N;

 int j = 0;

 int result = -1;

 while(j < N){

 if(a[j].neighbourCount){

 if((a[j].neighbourCount)<count){

 result=j;

 count = a[j].neighbourCount;

 }

 }

 j++;

 }

 return result;

 }

 void RemoveEdge(int c,int d){

 int count = a[c].neighbourCount;

 int j = 0;

 while(j<count){

 if((a[c].Adjacent[j])==d)

 break;

 j++;

 }

 a[c].Adjacent[j] = a[c].Adjacent[count-1];

 a[c].neighbourCount--;

 if(a[c].neighbourCount==0){

 delete a[c].Adjacent;

 vertexCount--;

 }

 }

 void RemoveVertex(int id){

 int count = a[id].neighbourCount;

 int j = 0;

 while(j < count){

 int neb = a[id].Adjacent[j];

 RemoveEdge(neb,id);

 j++;

 }

 if(count >0){

 a[id].neighbourCount = 0;

 delete a[id].Adjacent;

 vertexCount--;

 }

 }

void RemoveAllNeighbour(int id){

 int count = a[id].neighbourCount;

 int j = 0;

 while(j < count){

 int tobeRemoved = a[id].Adjacent[j];

 RemoveVertex(tobeRemoved);

 j++;

 }

}

int GiveNeighbour(int id) const{

 return a[id].Adjacent [0];

 }

 int GiveNeighbour(int id1, int id2) const{

 int t = a[id1].Adjacent[0];

 if(a[id1].neighbourCount>1){

 if(t==id2)

 t = a[id1].Adjacent[1];

 }

 return t;

 }

};

Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 102

int VertexCover(const Graph& a);

int VertexCoverBackTrack(const Graph& a, int lim);

int ChooseBothEnds(Graph& g,int end1, int end2){

 g.RemoveVertex(end1);

 g.RemoveVertex(end2);

 return 2+VertexCover(g);

}

int LeaveEnd(Graph& c,int lim, int end){

 int t = c.NebCount(end);

 lim = lim-t;

 c.RemoveAllNeighbour(end);

 int result= VertexCoverBackTrack(c,lim);

 if(result!=-1)

 result = result+t;

 return result;

}

int VertexCover(const Graph& a){

 if(a.NodeCount()>1){ // Graph is Non empty

 Graph b = a;

 int id = b.LeastDegreeVertex();

 if(b.NebCount(id)==1)

 {

 b.RemoveAllNeighbour(id);

 return 1+ VertexCover(b);

 }

 int end1 = b.GiveNeighbour(id);

 int end2 = b.GiveNeighbour(end1,id);

 int result1 = ChooseBothEnds(b,end1,end2);// Choose

both ends

 Graph c = a;

 int result2 = LeaveEnd(c,result1,end1); // Leave end1

 if(result2!=-1) return result2;

 Graph d = a;

 int result3 = LeaveEnd(d,result1,end2); //Leave end2

 return result3;

 }

 else

 return 0; // Edgeless Graph has cover of size 0

}

int VertexCoverBackTrack(const Graph& a, int lim){

 if(lim<0)

 return -1; // No Graph can have cover of negative size so

function returns failure

 if(a.NodeCount()>1){ // Non Empty Graph

 Graph b = a;

 int id = b.LeastDegreeVertex();

 if(b.NebCount(id)==1)

 {

 b.RemoveAllNeighbour(id);

 int u = VertexCoverBackTrack(b,lim-1);

 if(u!=-1)

 return u+1;

 return -1;

 }

 int end1 = b.GiveNeighbour(id);

 int end2 = b.GiveNeighbour(end1,id);

 int result1 = ChooseBothEnds(b,end1,end2); // Choose

both ends

 if(result1!=lim){

 if(result1<lim)

 return result1; // Answer found

 return -1; // backtrack

 }

 Graph c = a;

 int result2 = LeaveEnd(c,result1,end1); // Leave end1

 if(result2!=-1){

 return result2; // Answer found

 }

 Graph d = a;

 int result3 = LeaveEnd(d,result1,end2); //Leave end2

 return result3;

 }

 else

 return 0; // Edgeless graph has cover size 0

}

int main(int argc, char** argv) {

 Graph x;

 cout << VertexCover(x);

 return 0;

}

