
Volume IV, Issue XII, December 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 43

A Comprehensive Review of Code Clone Detection

Techniques

Kuldeep Kaur
1
, Dr. Raman Maini

2

Department of Computer Engineering, Punjabi University, Patiala-147002(India)

Abstract-code cloning is a current area of research in software

systems .To copying the existing code and paste it with or

without modification is known as code cloning. Code clone

detection techniques concerned with finding of the code fragment

that produce the same result. The issue of finding the duplicated

code led to different tools that can detect the copied code

fragments. In this paper comparative analysis of various code

clone detection technique have been done. It has been observed

that text based technique can detect only Type 1 clone. Token

based technique detect Type1, Type II clone. Tree based

approach detect Type1, Type II, Type III clone but it is very

difficult to create a syntax tree its complexity is very high.

Keywords:-code clones, clone detection, comparison, precision,

recall.

I. INTRODUCTION

ode clone is a current area of research. To copy the code

and reused the code by doing some modifications or

without doing some modification in the exiting code are

common activities in software development. The pasted code

are called clone of the original and the process is called

software cloning. In the software system copied code

fragments and code clones are considered as bad smell of the

software. It is observed that code clone has bad effect on the

maintenance of the software system. To remove the clones

from the software systems is quite beneficial. These clones are

syntactically or semantically similar. It is very difficult to

identify which code is copied code or which code is original.

Several studies show that it is difficult to maintain software

system which contains the code clones as compared to others

which does not contain the clone. Cloning may increases the

bug probability if some bug is found in the source code and

that code is reused by copying and pasting then that bug is

also found in that pasted code fragment. for fixing the bug all

these code fragment should be detected[1]. Code clones are

basically of four types , where the first three Type I, Type II,

Type III are textual and last one Type IV is functional.

A. Reasons of Code Duplication:-

There are various reasons for code duplication. Reuse of code,

logic and design is the main reason of code duplication.

Sometimes there is a need to merge two similar system having

similar fuctionalities to develop a new one which result

duplication of code even both the system are developed by

different teams. There is frequent update of the software

Developers are asked to reuse the existing code because of

high risk in developing the new code. One of the major cause

of code duplication is the time limit assigned to developers.

To complete a project some time limit are assigned to

developers. Developers find the easy solutions of the problem

due to time limit. They find the similar code related to their

project .they just copy and paste the existing code.

B. Drawback of Code Duplication:-

Code clones have bad impact on the maintainability,

reusability and quality of the software. If there is any code

segment present in the software which having a bug and the

code segment is copied and pasted anywhere in the system

then the bug is remains in all the pasted code segment which

is difficult to maintain. When duplicated code used in the

system it may lead to bad design which increase the cost of

the system. If in the software system there is duplicated code,

to understand the system additional time needed. It becomes

difficult to upgrade the system or even to change the existing

one.

II. CLONE TERMINOLOGIES

All clones are identify in the form of Clone Classes and Clone

Pairs. clone classes and clone pairs tells about the similarity

between various code clone fragments. If they have some

similar sequences in the code, clone-relation exists between

the code fragments. For example character strings, strings

without white space, transformed token sequences and

sequences of token type so on.

A. Code Fragment: Code fragment is some sequence of code

lines having different types of similarity between various code

fragments in its source code. These similar code fragments

may have comments or without comments. For example:

sequence of statements, begin-end block, etc.

B. Clone Pair: If there is any clone relation exist in the pair of

code fragments then it is called a clone pair or clone pair is a

pair of code fragment having some similarity between them.

C. Clone Set: A set of all the identical or similar fragments.

D. Clone Class: A set of all the clone pairs in which the

existing clone pairs having some clone relationship between

them is known as clone class.

C

Volume IV, Issue XII, December 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 44

E. Code Clone Types: On the basis of functionalities and

program text, two code fragments are said to be similar. The

first type of clone are mainly the result of copy and paste

activities. In the following type of clones Type I , Type II and

Type III clones are based on the textual similarity and Type

IV clones are based on the functional similarity.

1) Textual Similarity: in the textual based similarity or

program based similarity the code fragment are similar to

each other based on the program text. Based on the program

text there are three types of clones.

Type I Clones: In Type I clone, two code fragments are

identical to each other. However, there might be some

variations in white space, comments and layouts. Let us

consider the following example.

Int n; Int n;

Cout <<”enter the number”; Cout<<”ENTERTHE NUMBER”;

Cin >> n; Cin>>n;

If (n%2==0) { //comment1 If (n%2==0){//comment1‟

Cout <<”the number is even”;} Cout<<”THE NUMBER IS EVEN”;}

Else{ Else{

Cout <<”the number is odd”; Cout<<”THE NUMBER IS ODD”;

} }

 (original fragment) (copy clone)

Two code fragments copied fragment and original code

fragment are same, when we remove the white space and

comments from the code.

Type II Clones: In Type II clone the code segment which is

copied from the original code is same as original code .

however their may be some possible variations in the literals ,

variables, constants, class, types, layout and comments. The

syntactic structures of both the code segments are same. Let

us consider the following example.

If (salary >= 5000) { if (sal >= 5000)

Bonus = 0.5*salary; // comment1 {//comment1‟

} bon=0.5*sal;

else }

Bonus = 0.2*salary; // comment2 else

 bon=0.2*sal;

 (original fragment) (copy clone)

Volume IV, Issue XII, December 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 45

We see that the two code segments are syntactic similar to

each other but there are lot of variations in the shape,

variable names and value assignments.

Type III Clones: In Type III clones, By adding or changing

some statements the copied code fragment is further modified.

Let us consider the following example:

Total= phy+chem.+math; Total= phy+chem.+math;

Per = total/3; Per = total/3;

If (per>= 70) { if (per>= 70){

Cout<<”first division”; // comment1 //comment1‟

 ;} cout<<”first division”;

else cout<”remarks excellent”; // this statement is added

cout<<”second division”; // comment2‟ ;}

 else

 cout<<”second division”; //comment2

 (original fragment) (copy clone)

We see that in the copied fragments one statement is added .

2) Functional Similarity: If there is any two code fragments

which are similar in their functionality they are known as

semantic clones . Type IV clones are semantic clones.

Type IV Clones: In this code fragments are semantic similar.

In such type of clones, it is not necessary that the code

fragment are copied from the original code. Two code

fragments may be developed by the different teams but they

perform same computation. code fragments are similar in their

functionality because different teams Implement the same

logic. Let us consider the following code fragment 1 and code

fragment 2 where the swapping of two variables done .

Fragment 1: fragment2:

 int a=5, b=10 , temp ; int a=5, b= 10;

 temp = a; a = a + b;

 a = b; b = a- b;

 b = temp; a = a- b;

Both the code fragments are similar from the semantic point

of view. In fragment 1 the swapping is done using three

variables and in code fragment 2 swapping is done using two

variables.

 Precision and Recall: clone detector identified the

characteristics of the candidate key which are discussed in

terms of recall and precision. If the code clones are exactly

identified then the value of precision is high and if the value

of precision is low it indicates that code clones are not actual

code clones. Recall tells that actual clones which are present

in the source code are found or not .if the value of recall is

high then in the source code most of the clones have been

found and if the value of recall is low then in the source code

most of the clones is not found[2].

III. CLONE DETECTION TOOLS AND TECHNIQUES

In the literature several types of clone detection tools

techniques are presented . for the research purposes most of

Volume IV, Issue XII, December 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 46

the techniques are used, while a few of them are also used for

commercial pupose.

A. Text-based Techniques: In the text based technique the

source code fragment are assumed as sequence of line. After

removing the various comments, whitespace by applying the

various transformations the code fragment are compared with

each other. Once the two code fragment are found to similar

to each other to some extent they are known as clone pair or

clone pairs form the clone class. Sometimes in the clone

detection process the source code is directly used. Text based

technique is efficient technique but it can detect only Type I

clones. Text based approach can not detect the structural type

of clone having the same logic but different coding. In the text

based approach following transformations are applied on

source code.

1. Comments Removal: In the code fragment ignore all the

comments.

2. White space Removal: In the code fragment removes all

the tabs and blank spaces.

3. Normalization: On the source code some normalization are

applied.

Though text based approach can detect only type 1 clone .

This technique cannot detect the structural type of clones

having same logic but different coding [1].

Tool: Baker's Dup represent the source code as sequence of

lines and detects the clones in the code fragment line-by-line.

Baker‟s uses a line based string matching algorithm or lexer

on the individual lines. First Dup tool removes comments and

white space from the source code and then it replaces various

identifiers , variables and types with a special parameter so

that if the name of the two variable is different clone can be

identified. [1]. Baker „ Dup tool can not detect the clones if

the source code is written in different style.

B. Token-based Techniques: In the token-based technique,

first sequence of tokens is generated from the source code.

For converting the source code into tokens it requires a lexer.

Lexer convert the source code into tokens then the various

transformation are performed by adding, changing or deleting

some tokens. For finding the duplicated code or duplicated

subsequence of token the sequence is scanned. and the code

portions representing the duplicated code returned as clones.

Token based technique can detect Type I, Type II clone .

Tool: CCFinderx is one of the tool of the token-based

techniques. CCFinderx find the clones both with in the files or

from various files from programs and find the location of the

clones in the program. First, tokens are generated from the

source code and then the single token sequence are formed by

concatenating all the tokens. various transformations are

applied on the token sequences based on the transformation

rules . After applying various transformations various

identifiers are replaced with a special token. To find the clones

from the token sequence some tree based sub-string matching

algorithm is used and the similar sub strings pairs are called

as clone pairs/clone classes [1].

C. Tree-based Techniques: In the tree-based approach from

the source code a parse tree or an abstract syntax tree is

obtained. This technique creates sub trees rather than creating

tokens from each statements. The code then said to be code

clone if the sub trees match. With the help of parser of a

language similar sub trees are searched in the tree using tree

matching algorithm or structural metrics then the code of

similar sub trees are returned as clone pairs. Abstract syntax

tree have the complete information about the code. The result

obtained from this technique is quite efficient but to create a

abstract syntax tree is difficult for a large software and the

scalability is also not good.

Tool: CloneDR is one of the tool of the abstract syntax tree

based clone techniques. Compiler is used to generate AST or

abstract syntax tree and the complier compares the sub trees

based on some hash function, the sub trees which are similar

are returned as clones.

D. PDG-based Techniques: Program Dependency Graph

(PDG) technique is more efficient then tree based technique.

Program dependency graph show data flow and control flow

information. First the program dependency graph is obtained

from the source code then to find the similar sub graphs or

clones several type of sub graph matching algorithm are

applied and returned as clones. This technique can detect both

semantic and syntactic clones but in case of large software to

obtain the program dependency graph is very difficult.

Tool: One of the important program dependency graph based

clone detection approach is that of Komondoor and Horwitz's

PDG-DUP which identify isomorphic program dependency

sub graphs using program slicing.

E. Metrics-based Techniques: In Metrics based Technique

first different types of metrics of the code like number of lines

and number of functions are calculated and compare these

metrics to find the clones. Metrics based technique does not

compare code directly. To find the code clones several type of

software metrics are used by clone detection techniques. Most

of the time, for calculating the various type of metrics the

source code is converted into abstract syntax tree or program

data graph. Metrics are calculated from the name , layout,

control flow and expression of the functions.

Tool: One of the important tool of metrics-based techniques is

Covet/CLA to detect the clones using metrics. Mayrand et al.

calculate various type of metrics for each function unit of a

program like number of CFG edges, lines of source code,

number of function calls etc. Code fragments which have

similar metrics values are known as code clones. Covet/CLA

does not detect the Partly similar codes.

Volume IV, Issue XII, December 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 47

Comparison of the clone detection techniques w.r.t different properties:

Properties Text based Token based Tree based PDG based Metrics based

Transformation
Removes whitespace

and comments
Tokens is generated
from the source code

AST is generated
from the source code

PDG is generated
from the source code

To find metrics values

AST is generate from the

source code

Representation
normalized source

code
In the form of tokens

Represent in the form

of abstract syntax tree

Set of program

dependency graph
Set of metrics values

Comparison based tokens of line Token Node of tree
Node of program

dependency graph
Metrics value

Computational complexity Depends on algorithm Linear Quadratic Quadratic Linear

Refactoring opportunities
Good for exact

matches
Some Post processing

needed

It is good for

refactoring because

Find syntactic clones

Good for refactoring
Manual inspection is

required

Language in dependency Easily adaptable

It needs a lexer but

there is no syntactic

knowledge required

Parser is required

syntactic knowledge

of edge and PDG is

required

Parser is required

In Text based approach only type 1 clone is detected. It cannot

detect the clones which having structural similarity but having

different coding or have same logic. Token based approach is

more efficient then text based approach it can detect type 1

clone as well as type II clone. In tree based approach a parsed

tree is generated from the source program. The result which is

obtained from the tree based approach is efficient but to create

a syntax tree is very difficult and scalability of this is also not

good. Program dependency approach contains the data flow

and control flow information of a program. The semantic

information of a program also contain in the program

dependency graph. It detect type 1, type II and type III clones.

IV. CONCLUSION

Code clone is a big problem. A copy and paste activity which

is done by programmer is the main reason of code cloning. It

looks like a simple and effective method, these copy and paste

activities are not documented. Which create a bad effect on

the software quality and duplication also increase the bug

probability and maintenance problem. In this paper, a

comprehensive review of various techniques has been done by

emphasis on the types of clones. It has been observed that no

technique is found good on the basis of precision, recall,

robustness and scalability. Text based approach is efficient

technique. It gives overview of the duplicated code. Text

based approach can detect only Type I clone it cannot detect

the clones having the same logic or having structural

similarity. Token based technique is more efficient then text

based approach technique. Token based technique detect Type

I as well as Type II clone it cannot detect Type III clone. For

detecting Type III clone abstract syntax tree approach is used .

The result obtained from this quite efficient but it is difficult

to crate syntax tree . for detecting Type IV clone program

dependency graph approach is used.

REFERENCES

[1]. Chanchal Kumar Roy and James R. Cordy, “A Survey on Software

Clone Detection Research”, Technical Report No. 2007-541, School of
Computing Queen's University at Kingston Ontario, Canada, September

26, 2007.

[2]. Prajila Prem,” A Review on Code Clone Analysis and Code Clone
Detection.” International Journal of Engineering and Innovative

Technology (2277-3754) Volume 2, No.12, June 2013.

[3]. Harpreet Kaur and Rupinder Kaur,” Clone Detection in Web
Application Using Clone Metrics.” International Journal of Advanced

Research in Computer Science and Software Engineering (2277-128x)

volume 4, No.7, july 2014.
[4]. Kanika Raheja and Rajkumar Tekchandani,”An Emerging Approach

towards Code Clone Detection :Metric Based Approach on Byte Code”.

International Journal of Advanced Research in Computer Science and
Software Engineering (2277-128x) volume 3, No.5,May 2013.

[5]. Manisha Gaholt and Deepak Sethi,”Comparative Analysis of Tree-

based and Text- based Technique for Code Clone Detection.”
International Journal of Advanced Research in Computer Engineering

and Technology(2320-6802) volume 2,No.2,Fb 2014.

[6]. G. Anil kumar, Dr. C.R.K.Reddy, Dr. A. Govardhan, A. Ratna
Raju4,"Code duplication in Software Systems: A Survey." International

Journal of Software Engineering Research & Practices Vol.2, Issue 1,

Jan, 2012.
[7]. Sonam Gupta and P. C Gupta,"Literature Survey of Clone Detection

Techniques." International Journal of Computer Applications (0975 –

8887) Volume 99– No.3, August 2014.
[8]. Dhavleesh rattan, Rajesh Bhatia, Maninder Singh, ” Software Clone

Detection: Systematic Review,”Information And Software

Technology, ELSERVIER, PP 1165-1199,2013.
[9]. Mrs. Kavitha Esther Rajakumari , Dr. T. Jebarajan ,” A Novel Approach

to Effective Detction and Analysis of Code Clones ,” IEEE, 2013.

[10]. S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E.Merlo,

“Comparison and Evaluation of Clone Detection Tools”, Transactions

on software Engineering , 33(9):577-591(2007).

[11]. Koschke, R., “Survey of Research on Software Clones ” In Dagstuhl
Seminar 06301, pp.24,2006.

[12]. C. Kapser, M.W Godfrey,“Suppprting the analysis of Clones in

Software Systems : research articles”, Journal of Software Maintenance
and Evolution 18 (2) (2006) 61-82.

